Reaction participants Show >> << Hide
-
Namehelp_outline
N6-acetyl-L-lysyl-[protein]
Identifier
RHEA-COMP:10731
Reactive part
help_outline
- Name help_outline N6-acetyl-L-lysine residue Identifier CHEBI:61930 Charge 0 Formula C8H14N2O2 SMILEShelp_outline CC(=O)NCCCC[C@H](N-*)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2''-O-acetyl-ADP-D-ribose Identifier CHEBI:83767 Charge -2 Formula C17H23N5O15P2 InChIKeyhelp_outline BFNOPXRXIQJDHO-YDKGJHSESA-L SMILEShelp_outline CC(=O)O[C@H]1C(O)O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline nicotinamide Identifier CHEBI:17154 (CAS: 98-92-0) help_outline Charge 0 Formula C6H6N2O InChIKeyhelp_outline DFPAKSUCGFBDDF-UHFFFAOYSA-N SMILEShelp_outline NC(=O)c1cccnc1 2D coordinates Mol file for the small molecule Search links Involved in 61 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-lysyl-[protein]
Identifier
RHEA-COMP:9752
Reactive part
help_outline
- Name help_outline L-lysine residue Identifier CHEBI:29969 Charge 1 Formula C6H13N2O SMILEShelp_outline C([C@@H](C(*)=O)N*)CCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 137 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:43636 | RHEA:43637 | RHEA:43638 | RHEA:43639 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases.
Landry J., Sutton A., Tafrov S.T., Heller R.C., Stebbins J., Pillus L., Sternglanz R.
Homologs of the chromatin-bound yeast silent information regulator 2 (SIR2) protein are found in organisms from all biological kingdoms. SIR2 itself was originally discovered to influence mating-type control in haploid cells by locus-specific transcriptional silencing. Since then, SIR2 and its hom ... >> More
Homologs of the chromatin-bound yeast silent information regulator 2 (SIR2) protein are found in organisms from all biological kingdoms. SIR2 itself was originally discovered to influence mating-type control in haploid cells by locus-specific transcriptional silencing. Since then, SIR2 and its homologs have been suggested to play additional roles in suppression of recombination, chromosomal stability, metabolic regulation, meiosis, and aging. Considering the far-ranging nature of these functions, a major experimental goal has been to understand the molecular mechanism(s) by which this family of proteins acts. We report here that members of the SIR2 family catalyze an NAD-nicotinamide exchange reaction that requires the presence of acetylated lysines such as those found in the N termini of histones. Significantly, these enzymes also catalyze histone deacetylation in a reaction that absolutely requires NAD, thereby distinguishing them from previously characterized deacetylases. The enzymes are active on histone substrates that have been acetylated by both chromatin assembly-linked and transcription-related acetyltransferases. Contrary to a recent report, we find no evidence that these proteins ADP-ribosylate histones. Discovery of an intrinsic deacetylation activity for the conserved SIR2 family provides a mechanism for modifying histones and other proteins to regulate transcription and diverse biological processes. << Less
Proc. Natl. Acad. Sci. U.S.A. 97:5807-5811(2000) [PubMed] [EuropePMC]
-
Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli.
Zhao K., Chai X., Marmorstein R.
Sirtuins are NAD+-dependent protein deacetylase enzymes that are broadly conserved from bacteria to human, and have been implicated to play important roles in gene regulation, metabolism and longevity. cobB is a bacterial sirtuin that deacetylates acetyl-CoA synthetase (Acs) at an active site lysi ... >> More
Sirtuins are NAD+-dependent protein deacetylase enzymes that are broadly conserved from bacteria to human, and have been implicated to play important roles in gene regulation, metabolism and longevity. cobB is a bacterial sirtuin that deacetylates acetyl-CoA synthetase (Acs) at an active site lysine to stimulate its enzymatic activity. Here, we report the structure of cobB bound to an acetyl-lysine containing non-cognate histone H4 substrate. A comparison with the previously reported archaeal and eukaryotic sirtuin structures reveals the greatest variability in a small zinc-binding domain implicated to play a particularly important role in substrate-specific binding by the sirtuin proteins. Comparison of the cobB/histone H4 complex with other sirtuin proteins in complex with acetyl-lysine containing substrates, further suggests that contacts to the acetyl-lysine side-chain and beta-sheet interactions with residues directly C-terminal to the acetyl-lysine represent conserved features of sirtuin-substrate recognition. Isothermal titration calorimetry studies were used to compare the affinity of cobB for a variety of cognate and non-cognate acetyl-lysine-bearing peptides revealing an exothermic reaction with relatively little discrimination between substrates. In contrast, similar studies employing intact acetylated Acs protein as a substrate reveal a binding reaction that is endothermic, suggesting that cobB recognition of substrate involves a burial of hydrophobic surface and/or structural rearrangement involving substrate regions distal to the acetyl-lysine-binding site. Together, these studies suggest that substrate-specific binding by sirtuin proteins involves contributions from the zinc-binding domain of the enzyme and substrate regions distal to the acetyl-lysine-binding site. << Less
-
Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions.
Sauve A.A., Celic I., Avalos J., Deng H., Boeke J.D., Schramm V.L.
The Sir2 enzyme family is responsible for a newly classified chemical reaction, NAD(+)-dependent protein deacetylation. New peptide substrates, the reaction mechanism, and the products of the acetyl transfer to NAD(+) are described for SIR2. The final products of SIR2 reactions are the deacetylate ... >> More
The Sir2 enzyme family is responsible for a newly classified chemical reaction, NAD(+)-dependent protein deacetylation. New peptide substrates, the reaction mechanism, and the products of the acetyl transfer to NAD(+) are described for SIR2. The final products of SIR2 reactions are the deacetylated peptide and the 2' and 3' regioisomers of O-acetyl ADP ribose (AADPR), formed through an alpha-1'-acetyl ADP ribose intermediate and intramolecular transesterification reactions (2' --> 3'). The regioisomers, their anomeric forms, the interconversion rates, and the reaction equilibria were characterized by NMR, HPLC, 18O exchange, and MS methods. The mechanism of acetyl transfer to NAD(+) includes (1) ADP ribosylation of the peptide acyl oxygen to form a high-energy O-alkyl amidate intermediate, (2) attack of the 2'-OH group on the amidate to form a 1',2'-acyloxonium species, (3) hydrolysis to 2'-AADPR by the attack of water on the carbonyl carbon, and (4) an SIR2-independent transesterification equilibrating the 2'- and 3'-AADPRs. This mechanism is unprecedented in ADP-ribosyl transferase enzymology. The 2'- and 3'-AADPR products are candidate molecules for SIR2-initiated signaling pathways. << Less
-
The biochemistry of sirtuins.
Sauve A.A., Wolberger C., Schramm V.L., Boeke J.D.
Sirtuins are a family of NAD+-dependent protein deacetylases widely distributed in all phyla of life. Accumulating evidence indicates that sirtuins are important regulators of organism life span. In yeast, these unique enzymes regulate gene silencing by histone deacetylation and via formation of t ... >> More
Sirtuins are a family of NAD+-dependent protein deacetylases widely distributed in all phyla of life. Accumulating evidence indicates that sirtuins are important regulators of organism life span. In yeast, these unique enzymes regulate gene silencing by histone deacetylation and via formation of the novel compound 2'-O-acetyl-ADP-ribose. In multicellular organisms, sirtuins deacetylate histones and transcription factors that regulate stress, metabolism, and survival pathways. The chemical mechanism of sirtuins provides novel opportunities for signaling and metabolic regulation of protein deacetylation. The biological, chemical, and structural characteristics of these unusual enzymes are discussed in this review. << Less
-
Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase.
French J.B., Cen Y., Sauve A.A.
Sirtuins are NAD (+)-dependent enzymes that deacetylate a variety of cellular proteins and in some cases catalyze protein ADP-ribosyl transfer. The catalytic mechanism of deacetylation is proposed to involve an ADPR-peptidylimidate, whereas the mechanism of ADP-ribosyl transfer to proteins is unde ... >> More
Sirtuins are NAD (+)-dependent enzymes that deacetylate a variety of cellular proteins and in some cases catalyze protein ADP-ribosyl transfer. The catalytic mechanism of deacetylation is proposed to involve an ADPR-peptidylimidate, whereas the mechanism of ADP-ribosyl transfer to proteins is undetermined. Herein we characterize a Plasmodium falciparum sirtuin that catalyzes deacetylation of histone peptide sequences. Interestingly, the enzyme can also hydrolyze NAD (+). Two mechanisms of hydrolysis were identified and characterized. One is independent of acetyllysine substrate and produces alpha-stereochemistry as established by reaction of methanol which forms alpha-1-O-methyl-ADPR. This reaction is insensitive to nicotinamide inhibition. The second solvolytic mechanism is dependent on acetylated peptide and is proposed to involve the imidate to generate beta-stereochemistry. Stereochemistry was established by isolation of beta-1-O-methyl-ADPR when methanol was added as a cosolvent. This solvolytic reaction was inhibited by nicotinamide, suggesting that nicotinamide and solvent compete for the imidate. These findings establish new reactions of wildtype sirtuins and suggest possible mechanisms for ADP-ribosylation to proteins. These findings also illustrate the potential utility of nicotinamide as a probe for mechanisms of sirtuin-catalyzed ADP-ribosyl transfer. << Less
-
Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in E. coli.
Colak G., Xie Z., Zhu A.Y., Dai L., Lu Z., Zhang Y., Wan X., Chen Y., Cha Y.H., Lin H., Zhao Y., Tan M.
Lysine succinylation is a newly identified protein post-translational modification pathway present in both prokaryotic and eukaryotic cells. However, succinylation substrates and regulatory enzyme(s) remain largely unknown, hindering the biological study of this modification. Here we report the id ... >> More
Lysine succinylation is a newly identified protein post-translational modification pathway present in both prokaryotic and eukaryotic cells. However, succinylation substrates and regulatory enzyme(s) remain largely unknown, hindering the biological study of this modification. Here we report the identification of 2,580 bacterial lysine succinylation sites in 670 proteins and 2,803 lysine acetylation (Kac) sites in 782 proteins, representing the first lysine succinylation dataset and the largest Kac dataset in wild-type E. coli. We quantified dynamic changes of the lysine succinylation and Kac substrates in response to high glucose. Our data showed that high-glucose conditions led to more lysine-succinylated proteins and enhanced the abundance of succinyllysine peptides more significantly than Kac peptides, suggesting that glucose has a more profound effect on succinylation than on acetylation. We further identified CobB, a known Sir2-like bacterial lysine deacetylase, as the first prokaryotic desuccinylation enzyme. The identification of bacterial CobB as a bifunctional enzyme with lysine desuccinylation and deacetylation activities suggests that the eukaryotic Kac-regulatory enzymes may have enzymatic activities on various lysine acylations with very different structures. In addition, it is highly likely that lysine succinylation could have unique and more profound regulatory roles in cellular metabolism relative to lysine acetylation under some physiological conditions. << Less
Mol. Cell. Proteomics 12:3509-3520(2013) [PubMed] [EuropePMC]
-
Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression.
Wang C., Gao F., Wu J., Dai J., Wei C., Li Y.
The silent information regulator protein (Sir2) and its homologs are NAD(+)-dependent deacetylase enzymes that play important roles in a variety of physiological processes. However, the functions of the Sir2 family in plants are poorly understood. Here, we report that Arabidopsis AtSRT2, a homolog ... >> More
The silent information regulator protein (Sir2) and its homologs are NAD(+)-dependent deacetylase enzymes that play important roles in a variety of physiological processes. However, the functions of the Sir2 family in plants are poorly understood. Here, we report that Arabidopsis AtSRT2, a homolog of yeast Sir2, negatively regulates plant basal defense against the pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). In response to PstDC3000 infection, the expression of AtSRT2 was down-regulated in a salicylic acid (SA)-independent manner. In addition, knock-out of AtSRT2 (srt2) enhanced resistance against PstDC3000 and increased expression of pathogenesis-related gene 1 (PR1). Conversely, overexpression of AtSRT2 resulted in hypersusceptibility to PstDC3000 and impaired PR1 induction. Consistent with this phenotype, expression of PAD4, EDS5 and SID2, three essential genes in the SA biosynthesis pathway, were increased in the srt2 mutant and decreased in AtSRT2-overexpressing plants. Taken together, these results demonstrate that AtSRT2 is a negative regulator of basal defense, possibly by suppressing SA biosynthesis. << Less
-
Biochemical characterization of Plasmodium falciparum Sir2, a NAD+-dependent deacetylase.
Chakrabarty S.P., Saikumari Y.K., Bopanna M.P., Balaram H.
In Plasmodium falciparum, the causative agent of cerebral malaria, silent information regulator 2 (Sir2) has been implicated in pathogenesis through its role in var gene silencing. P. falciparum Sir2 (PfSir2) in addition to the catalytic core, has a 13 residue N-terminal and 4 residue C-terminal e ... >> More
In Plasmodium falciparum, the causative agent of cerebral malaria, silent information regulator 2 (Sir2) has been implicated in pathogenesis through its role in var gene silencing. P. falciparum Sir2 (PfSir2) in addition to the catalytic core, has a 13 residue N-terminal and 4 residue C-terminal extension over the shorter Archaeoglobus fulgidus Sir2. In this paper, we highlight our studies aimed at understanding the kinetic mechanism of PfSir2 and the role of N- and C-terminal extensions in protein function and oligomerization. Bisubstrate kinetic analysis showed that PfSir2 exhibits a rapid equilibrium ordered sequential mechanism, with peptide binding preceding NAD(+). This study also reports on surfactin as a novel Sir2 inhibitor exhibiting competitive inhibition with respect to NAD(+) and uncompetitive inhibition with acetylated peptide. This inhibition pattern with surfactin provides further support for ordered binding of substrates. Surfactin was also found to be a potent inhibitor of intra-erythrocytic growth of P. falciparum with 50% inhibitory concentration in the low micromolar range. PfSir2, like the yeast homologs (yHst2 and Sir2p), is a trimer in solution. However, dissociation of trimer to monomers in the presence of NAD(+) is characteristic of the parasite enzyme. Oligomerization studies on N-and/or C-terminal deletion constructs of PfSir2 highlight the role of C-terminus of the protein in mediating homotrimerization. N-terminal deletion resulted in reduced catalytic efficiency although substrate affinity was not altered in the constructs. Interestingly, deletion of both the ends relaxed NAD(+) specificity. << Less
Mol. Biochem. Parasitol. 158:139-151(2008) [PubMed] [EuropePMC]