Reaction participants Show >> << Hide
- Name help_outline coproporphyrinogen III Identifier CHEBI:57309 Charge -4 Formula C36H40N4O8 InChIKeyhelp_outline NIUVHXTXUXOFEB-UHFFFAOYSA-J SMILEShelp_outline Cc1c2Cc3[nH]c(Cc4[nH]c(Cc5[nH]c(Cc([nH]2)c1CCC([O-])=O)c(C)c5CCC([O-])=O)c(C)c4CCC([O-])=O)c(CCC([O-])=O)c3C 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline coproporphyrin III Identifier CHEBI:131725 Charge -4 Formula C36H34N4O8 InChIKeyhelp_outline JWFCYWSMNRLXLX-UJJXFSCMSA-J SMILEShelp_outline C1=2NC(C=C3N=C(C=C4NC(=CC5=NC(=C1)C(=C5CCC(=O)[O-])C)C(=C4C)CCC(=O)[O-])C(=C3C)CCC(=O)[O-])=C(C2C)CCC(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:43436 | RHEA:43437 | RHEA:43438 | RHEA:43439 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Purification of and kinetic studies on a cloned protoporphyrinogen oxidase from the aerobic bacterium Bacillus subtilis.
Corrigall A.V., Siziba K.B., Maneli M.H., Shephard E.G., Ziman M., Dailey T.A., Dailey H.A., Kirsch R.E., Meissner P.N.
The previously cloned and expressed protoporphyrinogen oxidase from Bacillus subtilis has been purified to homogeneity by Ni2+ affinity chromatography using a His6 tag and characterized. The enzyme has a molecular weight of approximately 56,000 daltons, a pI of 7.5, a pH optimum (protoporphyrinoge ... >> More
The previously cloned and expressed protoporphyrinogen oxidase from Bacillus subtilis has been purified to homogeneity by Ni2+ affinity chromatography using a His6 tag and characterized. The enzyme has a molecular weight of approximately 56,000 daltons, a pI of 7.5, a pH optimum (protoporphyrinogen) of 8.7, and a noncovalently bound flavine adenine dinucleotide cofactor. The Michaelis constants (Km) for protoporphyrinogen-IX, coproporphyrinogen-III, and mesoporphyrinogen-IX are 1.0, 5.29, and 4.92 microM, respectively. Polyclonal antibody to B. subtilis protoporphyrinogen oxidase demonstrated weak cross-reactivity with both human and Myxococcus xanthus protoporphyrinogen oxidase. B. subtilis protoporphyrinogen oxidase is not inhibited by the diphenyl ether herbicide acifluorfen at 100 microM and is weakly inhibited by methylacifluorfen at the same concentration. Bilirubin, biliverdin, and hemin are all competitive inhibitors of this enzyme. << Less
Arch. Biochem. Biophys. 358:251-256(1998) [PubMed] [EuropePMC]
-
Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin.
Dailey H.A., Gerdes S., Dailey T.A., Burch J.S., Phillips J.D.
It has been generally accepted that biosynthesis of protoheme (heme) uses a common set of core metabolic intermediates that includes protoporphyrin. Herein, we show that the Actinobacteria and Firmicutes (high-GC and low-GC Gram-positive bacteria) are unable to synthesize protoporphyrin. Instead, ... >> More
It has been generally accepted that biosynthesis of protoheme (heme) uses a common set of core metabolic intermediates that includes protoporphyrin. Herein, we show that the Actinobacteria and Firmicutes (high-GC and low-GC Gram-positive bacteria) are unable to synthesize protoporphyrin. Instead, they oxidize coproporphyrinogen to coproporphyrin, insert ferrous iron to make Fe-coproporphyrin (coproheme), and then decarboxylate coproheme to generate protoheme. This pathway is specified by three genes named hemY, hemH, and hemQ. The analysis of 982 representative prokaryotic genomes is consistent with this pathway being the most ancient heme synthesis pathway in the Eubacteria. Our results identifying a previously unknown branch of tetrapyrrole synthesis support a significant shift from current models for the evolution of bacterial heme and chlorophyll synthesis. Because some organisms that possess this coproporphyrin-dependent branch are major causes of human disease, HemQ is a novel pharmacological target of significant therapeutic relevance, particularly given high rates of antimicrobial resistance among these pathogens. << Less
Proc. Natl. Acad. Sci. U.S.A. 112:2210-2215(2015) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Structural insight into unique properties of protoporphyrinogen oxidase from Bacillus subtilis.
Qin X., Sun L., Wen X., Yang X., Tan Y., Jin H., Cao Q., Zhou W., Xi Z., Shen Y.
Protoporphyrinogen IX oxidase (PPO) converts protoporphyrinogen IX to protoporphyrin IX, playing an important part in the heme/chlorophyll biosynthetic pathway. Bacillus subtilis PPO (bsPPO) is unique among PPO family members in that it is a soluble monomer, is inefficiently inhibited by the herbi ... >> More
Protoporphyrinogen IX oxidase (PPO) converts protoporphyrinogen IX to protoporphyrin IX, playing an important part in the heme/chlorophyll biosynthetic pathway. Bacillus subtilis PPO (bsPPO) is unique among PPO family members in that it is a soluble monomer, is inefficiently inhibited by the herbicide acifluorfen (AF) and has broader substrate specificity than other PPO enzymes. Here, we present the crystal structure of bsPPO bound to AF. Our structure shows that the AF molecule binds to a new site outside the previously identified inhibitor binding pocket. Most importantly, the benzene ring of the 2-nitrobenzoic acid moiety of AF lies parallel to the isoalloxazine ring of FAD at a distance of less than 3.5A, providing a framework for the interaction of FAD with the substrate protoporphyrinogen IX. Furthermore, our structure reveals that the larger substrate binding chamber and predominantly positively charged chamber surface of bsPPO are more favorable for the binding of coproporphyrinogen-III. These crystallographic findings uncover biochemically unique properties of bsPPO, providing important information for further understanding the enzymatic mechanism. << Less
J. Struct. Biol. 170:76-82(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Bacillus subtilis HemY is a peripheral membrane protein essential for protoheme IX synthesis which can oxidize coproporphyrinogen III and protoporphyrinogen IX.
Hansson M., Hederstedt L.
The hemY gene of the Bacillus subtilis hemEHY operon is essential for protoheme IX biosynthesis. Two previously isolated hemY mutations were sequenced. Both mutations are deletions affecting the hemY reading frame, and they cause the accumulation of coproporphyrinogen III or coproporphyrin III in ... >> More
The hemY gene of the Bacillus subtilis hemEHY operon is essential for protoheme IX biosynthesis. Two previously isolated hemY mutations were sequenced. Both mutations are deletions affecting the hemY reading frame, and they cause the accumulation of coproporphyrinogen III or coproporphyrin III in the growth medium and the accumulation of trace amounts of other porphyrinogens or porphyrins intracellularly. HemY was found to be a 53-kDa peripheral membrane-bound protein. In agreement with recent findings by Dailey et al. (J. Biol. Chem. 269:813-815, 1994) B. subtilis HemY protein synthesized in Escherichia coli oxidized coproporphyrinogen III and protoporphyrinogen IX to coproporphyrin and protoporphyrin, respectively. The protein is not a general porphyrinogen oxidase since it did not oxidize uroporphyrinogen III. The apparent specificity constant, kcat/Km, for HemY was found to be about 12-fold higher with coproporphyrinogen III as a substrate compared with protoporphyrinogen IX as a substrate. The protoporphyrinogen IX oxidase activity is consistent with the function of HemY in a late step of protoheme IX biosynthesis, i.e., HemY catalyzes the penultimate step of the pathway. However, the efficient coproporphyrinogen III to coproporphyrin oxidase activity is unexplained in the current view of protoheme IX biosynthesis. << Less