Reaction participants Show >> << Hide
-
Namehelp_outline
[sulfur-carrier protein ThiS]-C-terminal Gly-Gly
Identifier
RHEA-COMP:12909
Reactive part
help_outline
- Name help_outline C-terminal Gly-Gly residue Identifier CHEBI:90778 Charge -1 Formula C4H6N2O3 SMILEShelp_outline [O-]C(CNC(CN*)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
[sulfur-carrier protein ThiS]-C-terminal Gly-Gly-AMP
Identifier
RHEA-COMP:12910
Reactive part
help_outline
- Name help_outline C-terminal Gly-Gly-AMP Identifier CHEBI:90618 Charge -1 Formula C14H18N7O9P SMILEShelp_outline N1(C2=C(C(=NC=N2)N)N=C1)[C@@H]3O[C@H](COP([O-])(OC(CNC(CN*)=O)=O)=O)[C@H]([C@H]3O)O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:43344 | RHEA:43345 | RHEA:43346 | RHEA:43347 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: identification of an acyldisulfide-linked protein--protein conjugate that is functionally analogous to the ubiquitin/E1 complex.
Xi J., Ge Y., Kinsland C., McLafferty F.W., Begley T.P.
A covalently linked protein--protein conjugate between ThiF and ThiS thiocarboxylate was found in a partially purified coexpressed ThiF/ThiS protein mixture by using Fourier transform mass spectrometry. The Cys-184 of ThiF and the C terminus of ThiS thiocarboxylate were identified to be involved i ... >> More
A covalently linked protein--protein conjugate between ThiF and ThiS thiocarboxylate was found in a partially purified coexpressed ThiF/ThiS protein mixture by using Fourier transform mass spectrometry. The Cys-184 of ThiF and the C terminus of ThiS thiocarboxylate were identified to be involved in the formation of this complex by using both mutagenesis and chemical modification methods. A complementation study of Escherichia coli thiF(-) using thiF(C184S) suggests that this conjugate is an essential intermediate involved in the biosynthesis of the thiazole moiety of thiamin. This ThiF/ThiS conjugate is the first characterized example of a unique acyldisulfide intermediate in a biosynthetic system. This protein conjugate is also an example of an ubiquitin-E1 like protein-protein conjugate in prokaryotes and supports a strong evolutionary link between thiamin biosynthesis and the ubiquitin conjugating system. << Less
Proc. Natl. Acad. Sci. U.S.A. 98:8513-8518(2001) [PubMed] [EuropePMC]
-
Structural analysis of Escherichia coli ThiF.
Duda D.M., Walden H., Sfondouris J., Schulman B.A.
Escherichia coli ThiF is an enzyme in the biosynthetic cascade for generating the essential cofactor thiamin pyrophosphate. In this cascade, ThiF catalyzes adenylation of the C terminus of ThiS. We report here the crystal structures of ThiF, alone and in complex with ATP. The structures provide in ... >> More
Escherichia coli ThiF is an enzyme in the biosynthetic cascade for generating the essential cofactor thiamin pyrophosphate. In this cascade, ThiF catalyzes adenylation of the C terminus of ThiS. We report here the crystal structures of ThiF, alone and in complex with ATP. The structures provide insight into a preference for ATP during adenylation of the protein ThiS. Additionally, the structures reveal an ordered crossover loop predicted to clamp the flexible tail of ThiS into the ThiF active site during the adenylation reaction. The importance of the crossover loop for ThiF activity is highlighted by mutational analysis. Comparison of ThiF with the structural homologues MoeB, APPBP1-UBA3, and SAE1-SAE2 reveals that the ATP-binding site, including an arginine-finger, is maintained throughout evolution, and shows divergence occurring in protein substrate-binding sites and regions devoted to unique steps in the specific function of each enzyme. << Less
-
Structure of the Escherichia coli ThiS-ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis.
Lehmann C., Begley T.P., Ealick S.E.
We have determined the crystal structure of the Escherichia coli ThiS-ThiF protein complex at 2.0 A resolution. ThiS and ThiF are bacterial proteins involved in the synthesis of the thiazole moiety of thiamin. ThiF catalyzes the adenylation of the carboxy terminus of ThiS and the subsequent displa ... >> More
We have determined the crystal structure of the Escherichia coli ThiS-ThiF protein complex at 2.0 A resolution. ThiS and ThiF are bacterial proteins involved in the synthesis of the thiazole moiety of thiamin. ThiF catalyzes the adenylation of the carboxy terminus of ThiS and the subsequent displacement of AMP catalyzed by ThiI-persulfide to give a ThiS-ThiI acyl disulfide. Disulfide interchange, involving Cys184 on ThiF, then generates the ThiS-ThiF acyl disulfide, which functions as the sulfur donor for thiazole formation. ThiS is a small 7.2 kDa protein that structurally resembles ubiquitin and the molybdopterin biosynthetic protein MoaD. ThiF is a 27 kDa protein with distinct sequence and structural similarity to the ubiquitin activating enzyme E1 and the molybdopterin biosynthetic protein MoeB. The ThiF-ThiS structure clarifies the mechanism of the sulfur transfer chemistry involved in thiazole biosynthesis. << Less