Enzymes
UniProtKB help_outline | 1,537 proteins |
Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-(hexanoyl)sphing-4-enine Identifier CHEBI:63867 Charge 0 Formula C24H47NO3 InChIKeyhelp_outline NPRJSFWNFTXXQC-QFWQFVLDSA-N SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@@H](O)[C@H](CO)NC(=O)CCCCC 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-hexanoylsphing-4-enine 1-phosphate Identifier CHEBI:82959 Charge -2 Formula C24H46NO6P InChIKeyhelp_outline UHXNGRCUFWVQPN-QFWQFVLDSA-L SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@@H](O)[C@H](COP([O-])([O-])=O)NC(=O)CCCCC 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:43312 | RHEA:43313 | RHEA:43314 | RHEA:43315 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
A novel acylglycerol kinase that produces lysophosphatidic acid modulates cross talk with EGFR in prostate cancer cells.
Bektas M., Payne S.G., Liu H., Goparaju S., Milstien S., Spiegel S.
The bioactive phospholipids, lysophosphatidic acid (LPA) and phosphatidic acid (PA), regulate pivotal processes related to the pathogenesis of cancer. Here, we report characterization of a novel lipid kinase, designated acylglycerol kinase (AGK), that phosphorylates monoacylglycerol and diacylglyc ... >> More
The bioactive phospholipids, lysophosphatidic acid (LPA) and phosphatidic acid (PA), regulate pivotal processes related to the pathogenesis of cancer. Here, we report characterization of a novel lipid kinase, designated acylglycerol kinase (AGK), that phosphorylates monoacylglycerol and diacylglycerol to form LPA and PA, respectively. Confocal microscopy and subcellular fractionation suggest that AGK is localized to the mitochondria. AGK expression was up-regulated in prostate cancers compared with normal prostate tissues from the same patient. Expression of AGK in PC-3 prostate cancer cells markedly increased formation and secretion of LPA. This increase resulted in concomitant transactivation of the EGF receptor and sustained activation of extracellular signal related kinase (ERK) 1/2, culminating in enhanced cell proliferation. AGK expression also increased migratory responses. Conversely, down-regulating expression of endogenous AGK inhibited EGF-but not LPA-induced ERK1/2 activation and progression through the S phase of the cell cycle. Hence, AGK can amplify EGF signaling pathways and may play an important role in the pathophysiology of prostate cancer. << Less
J. Cell Biol. 169:801-811(2005) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Further characterization of mammalian ceramide kinase: substrate delivery and (stereo)specificity, tissue distribution, and subcellular localization studies.
Van Overloop H., Gijsbers S., Van Veldhoven P.P.
Recombinant human ceramide kinase (HsCERK) was analyzed with regard to dependence on divalent cations and to substrate delivery, spectrum, specificity, and stereoselectivity. Depending on the chain length of the ceramide, either albumin for short-chain ceramide or a mixed micellar form (octylgluco ... >> More
Recombinant human ceramide kinase (HsCERK) was analyzed with regard to dependence on divalent cations and to substrate delivery, spectrum, specificity, and stereoselectivity. Depending on the chain length of the ceramide, either albumin for short-chain ceramide or a mixed micellar form (octylglucoside/cardiolipin) for long-chain ceramide was preferred for the substrate delivery, the former resulting in higher activities. Bacterially expressed HsCERK was highly dependent on Mg2+ ions, much less on Ca2+ ions. A clear preference for the d-erythro isomer was seen. Various N-acylated amino alcohols were no substrate, but N-hexanoyl-1-O-hexadecyl-2-desoxy-2-amino-sn-glycerol and N-tetradecanoyl-2S-amino-1-butanol were phosphorylated, suggesting that the secondary hydroxy group is not required for recognition. The properties of HsCERK, expressed in CHO cells, were similar to those of the bacterially expressed protein, including the Mg2+ dependence. In mouse, the highest activities were found in testis and cerebellum, and upon subcellular fractionation the activity was recovered mainly in the microsomal fraction. This fits with the plasma membrane localization in CHO cells, which was mediated by the N-terminal putative pleckstrin domain. No evidence for phosphorylation of ceramide by the recently described multiple lipid kinase was found. The latter kinase is localized in the mitochondria, but no firm conclusions with regard to its substrate could be drawn. << Less
J. Lipid Res. 47:268-283(2006) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.