Reaction participants Show >> << Hide
-
Namehelp_outline
uridine1498 in 16S rRNA
Identifier
RHEA-COMP:10284
Reactive part
help_outline
- Name help_outline UMP residue Identifier CHEBI:65315 Charge -1 Formula C9H10N2O8P Positionhelp_outline 1498 SMILEShelp_outline C1=CC(NC(N1[C@@H]2O[C@H](COP(*)(=O)[O-])[C@H]([C@H]2O)O*)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 73 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N3-methyluridine1498 in 16S rRNA
Identifier
RHEA-COMP:10283
Reactive part
help_outline
- Name help_outline N3-methyluridine 5'-phosphate residue Identifier CHEBI:74502 Charge -1 Formula C10H12N2O8P Positionhelp_outline 1498 SMILEShelp_outline C1=CC(N(C(N1[C@@H]2O[C@H](COP(*)(=O)[O-])[C@H]([C@H]2O)O*)=O)C)=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 827 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:42920 | RHEA:42921 | RHEA:42922 | RHEA:42923 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family.
Basturea G.N., Rudd K.E., Deutscher M.P.
A variety of RNA methyltransferases act during ribosomal RNA maturation to modify nucleotides in a site-specific manner. However, of the 10 base-methylated nucleotides present in the small ribosomal subunit of Escherichia coli, only three enzymes responsible for modification of four bases are know ... >> More
A variety of RNA methyltransferases act during ribosomal RNA maturation to modify nucleotides in a site-specific manner. However, of the 10 base-methylated nucleotides present in the small ribosomal subunit of Escherichia coli, only three enzymes responsible for modification of four bases are known. Here, we show that the protein encoded by yggJ, a member of the uncharacterized DUF558 protein family of predicted alpha/beta (trefoil) knot methyltransferases is responsible for methylation at U1498 in 16S rRNA. The gene is well-conserved across bacteria and plants, and likely performs the same function in other organisms. A yggJ deletion strain lacks the methyl group at U1498 as well as the specific methyltransferase activity. Moreover, purified recombinant YggJ specifically methylates m3U1498 in vitro. The deletion strain was unaffected in exponential growth in rich or minimal media at multiple temperatures, but it was defective when grown in competition with isogenic wild-type cells. Based on these data, we conclude that yggJ is the founding member of a family of RNA base methyltransferases, and propose that it be renamed rsmE. << Less
-
Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE.
Basturea G.N., Deutscher M.P.
The small ribosome subunit of Escherichia coli contains 10 base-methylated sites distributed in important functional regions. At present, seven enzymes responsible for methylation of eight bases are known, but most of them have not been well characterized. One of these enzymes, RsmE, was recently ... >> More
The small ribosome subunit of Escherichia coli contains 10 base-methylated sites distributed in important functional regions. At present, seven enzymes responsible for methylation of eight bases are known, but most of them have not been well characterized. One of these enzymes, RsmE, was recently identified and shown to specifically methylate U1498. Here we describe the enzymatic properties and substrate specificity of RsmE. The enzyme forms dimers in solution and is most active in the presence of 10-15 mM Mg(2+) and 100 mM NH(4)Cl at pH 7-9; however, in the presence of spermidine, Mg(2+) is not required for activity. While small ribosome subunits obtained from an RsmE deletion strain can be methylated by purified RsmE, neither 70S ribosomes nor 50S subunits are active. Likewise, 16S rRNA obtained from the mutant strain, synthetic 16S rRNA, and 3' minor domain RNA are all very poor or inactive as substrates. 30S particles partially depleted of proteins by treatment with high concentrations of LiCl or in vitro reconstituted intermediate particles also show little or no methyl acceptor activity. Based on these data, we conclude that RsmE requires a highly structured ribonucleoprotein particle as a substrate for methylation, and that methylation events in the 3' minor domain of 16S rRNA probably occur late during 30S ribosome assembly. << Less