Enzymes
UniProtKB help_outline | 1,083 proteins |
Reaction participants Show >> << Hide
- Name help_outline cholesterol Identifier CHEBI:16113 (Beilstein: 2060565; CAS: 57-88-5) help_outline Charge 0 Formula C27H46O InChIKeyhelp_outline HVYWMOMLDIMFJA-DPAQBDIFSA-N SMILEShelp_outline C1[C@@]2([C@]3(CC[C@]4([C@]([C@@]3(CC=C2C[C@H](C1)O)[H])(CC[C@@]4([C@H](C)CCCC(C)C)[H])[H])C)[H])C 2D coordinates Mol file for the small molecule Search links Involved in 63 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline octadecanoyl-CoA Identifier CHEBI:57394 Charge -4 Formula C39H66N7O17P3S InChIKeyhelp_outline SIARJEKBADXQJG-LFZQUHGESA-J SMILEShelp_outline CCCCCCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 62 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline cholesteryl octadecanoate Identifier CHEBI:82750 (CAS: 35602-69-8) help_outline Charge 0 Formula C45H80O2 InChIKeyhelp_outline XHRPOTDGOASDJS-XNTGVSEISA-N SMILEShelp_outline CCCCCCCCCCCCCCCCCC(=O)O[C@H]1CC[C@]2(C)[C@H]3CC[C@]4(C)[C@H](CC[C@H]4[C@@H]3CC=C2C1)[C@H](C)CCCC(C)C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:42812 | RHEA:42813 | RHEA:42814 | RHEA:42815 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Functional expression of a cDNA to human acyl-coenzyme A:cholesterol acyltransferase in yeast. Species-dependent substrate specificity and inhibitor sensitivity.
Yang H., Cromley D., Wang H., Billheimer J.T., Sturley S.L.
We have identified two yeast genes with similarity to a human cDNA encoding acyl-coenzyme A:cholesterol acyltransferase (ACAT). Deletion of both yeast genes results in a viable cell with undetectable esterified sterol (Yang, H., Bard, M., Bruner, D. A., Gleeson, A., Deckelbaum, R. J., Aljinovic, G ... >> More
We have identified two yeast genes with similarity to a human cDNA encoding acyl-coenzyme A:cholesterol acyltransferase (ACAT). Deletion of both yeast genes results in a viable cell with undetectable esterified sterol (Yang, H., Bard, M., Bruner, D. A., Gleeson, A., Deckelbaum, R. J., Aljinovic, G., Pohl, T., Rothstein, R., and Sturley, S. L. (1996) Science 272, 1353-1356). Here, we expressed the human cDNA in the yeast double mutant, resulting in high level production of ACAT protein, but low in vivo esterification of ergosterol, the predominant yeast sterol. The activity of the human enzyme was increased by incubation of these cells with 25-hydroxy, cholesterol, an established positive regulator of mammalian sterol esterification. In contrast, the yeast enzymes were unaffected by this reagent. In vitro microsomal assays indicated no sterol esterification in extracts from the double mutant. However, significant activity was detected from strains expressing human ACAT when cholesterol was equilibrated with the microsomal membranes. The human enzyme in yeast utilized cholesterol as the preferred sterol and was sensitive to competitive (S58035) and non-competitive (DuP 128) ACAT inhibitors. The yeast esterifying enzymes exhibited a diminished sterol substrate preference and were sensitive only to S58035. Human ACAT had a broad acyl-CoA substrate specificity, the other substrate for this reaction. By contrast, the yeast enzymes had a marked preference for specific acyl-CoAs, particularly unsaturated C18 forms. These results confirm the yeast genes as functional homologs of the human gene and demonstrate that the enzymes confer substrate specificity to the esterification reaction in both organisms. << Less
J. Biol. Chem. 272:3980-3985(1997) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.