Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline a (2S)-2-hydroxycarboxylate Identifier CHEBI:58123 Charge -1 Formula C2H2O3R SMILEShelp_outline O[C@@H]([*])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 2-oxocarboxylate Identifier CHEBI:35179 Charge -1 Formula C2O3R SMILEShelp_outline [O-]C(=O)C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 599 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:42768 | RHEA:42769 | RHEA:42770 | RHEA:42771 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea.
Graupner M., Xu H., White R.H.
Two putative malate dehydrogenase genes, MJ1425 and MJ0490, from Methanococcus jannaschii and one from Methanothermus fervidus were cloned and overexpressed in Escherichia coli, and their gene products were tested for the ability to catalyze pyridine nucleotide-dependent oxidation and reduction re ... >> More
Two putative malate dehydrogenase genes, MJ1425 and MJ0490, from Methanococcus jannaschii and one from Methanothermus fervidus were cloned and overexpressed in Escherichia coli, and their gene products were tested for the ability to catalyze pyridine nucleotide-dependent oxidation and reduction reactions of the following alpha-hydroxy-alpha-keto acid pairs: (S)-sulfolactic acid and sulfopyruvic acid; (S)-alpha-hydroxyglutaric acid and alpha-ketoglutaric acid; (S)-lactic acid and pyruvic acid; and 1-hydroxy-1,3,4,6-hexanetetracarboxylic acid and 1-oxo-1,3,4, 6-hexanetetracarboxylic acid. Each of these reactions is involved in the formation of coenzyme M, methanopterin, coenzyme F(420), and methanofuran, respectively. Both the MJ1425-encoded enzyme and the MJ0490-encoded enzyme were found to function to different degrees as malate dehydrogenases, reducing oxalacetate to (S)-malate using either NADH or NADPH as a reductant. Both enzymes were found to use either NADH or NADPH to reduce sulfopyruvate to (S)-sulfolactate, but the V(max)/K(m) value for the reduction of sulfopyruvate by NADH using the MJ1425-encoded enzyme was 20 times greater than any other combination of enzymes and pyridine nucleotides. Both the M. fervidus and the MJ1425-encoded enzyme catalyzed the NAD(+)-dependent oxidation of (S)-sulfolactate to sulfopyruvate. The MJ1425-encoded enzyme also catalyzed the NADH-dependent reduction of alpha-ketoglutaric acid to (S)-hydroxyglutaric acid, a component of methanopterin. Neither of the enzymes reduced pyruvate to (S)-lactate, a component of coenzyme F(420). Only the MJ1425-encoded enzyme was found to reduce 1-oxo-1,3,4,6-hexanetetracarboxylic acid, and this reduction occurred only to a small extent and produced an isomer of 1-hydroxy-1,3,4,6-hexanetetracarboxylic acid that is not involved in the biosynthesis of methanofuran c. We conclude that the MJ1425-encoded enzyme is likely to be involved in the biosynthesis of both coenzyme M and methanopterin. << Less
J. Bacteriol. 182:3688-3692(2000) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The putative L-lactate dehydrogenase from Methanococcus jannaschii is an NADPH-dependent L-malate dehydrogenase.
Madern D.
The enzyme encoded by Methanococcus jannaschii open reading frame (ORF) 0490 was purified and characterized. It was shown to be an NADPH-dependent [lactate dehydrogenase (LDH)-like] L-malate dehydrogenase (MalDH) and not an L-lactate dehydrogenase, as had been suggested previously on the basis of ... >> More
The enzyme encoded by Methanococcus jannaschii open reading frame (ORF) 0490 was purified and characterized. It was shown to be an NADPH-dependent [lactate dehydrogenase (LDH)-like] L-malate dehydrogenase (MalDH) and not an L-lactate dehydrogenase, as had been suggested previously on the basis of amino acid sequence similarity. The results show the importance of biochemical data in the assignment of ORF function in genomic sequences and have implications for the phylogenetic distribution of members of the MalDH/LDH enzyme superfamilies within the prokaryotic kingdom. << Less
Mol. Microbiol. 37:1515-1520(2000) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases.
Lee B.I., Chang C., Cho S.-J., Eom S.H., Kim K.K., Yu Y.G., Suh S.W.
The MJ0490 gene, one of the only two genes of Methanococcus jannaschii showing sequence similarity to the lactate/malate family of dehydrogenases, was classified initially as coding for a putative l-lactate dehydrogenase (LDH). It has been re-classified as a malate dehydrogenase (MDH) gene, becaus ... >> More
The MJ0490 gene, one of the only two genes of Methanococcus jannaschii showing sequence similarity to the lactate/malate family of dehydrogenases, was classified initially as coding for a putative l-lactate dehydrogenase (LDH). It has been re-classified as a malate dehydrogenase (MDH) gene, because it shows significant sequence similarity to MT0188, MDH II from Methanobacterium thermoautotrophicum strain DeltaH. The three-dimensional structure of its gene product has been determined in two crystal forms: a "dimeric" structure in the orthorhombic crystal at 1.9 A resolution and a "tetrameric" structure in the tetragonal crystal at 2.8 A. These structures share a similar subunit fold with other LDHs and MDHs. The tetrameric structure resembles typical tetrameric LDHs. The dimeric structure is equivalent to the P-dimer of tetrameric LDHs, unlike dimeric MDHs, which correspond to the Q-dimer. The structure reveals that the cofactor NADP(H) is bound at the active site, despite the fact that it was not intentionally added during protein purification and crystallization. The preference of NADP(H) over NAD(H) has been supported by activity assays. The cofactor preference is explained by the presence of a glycine residue in the cofactor binding pocket (Gly33), which replaces a conserved aspartate (or glutamate) residue in other NAD-dependent LDHs or MDHs. Preference for NADP(H) is contributed by hydrogen bonds between the oxygen atoms of the monophosphate group and the ribose sugar of adenosine in NADP(H) and the side-chains of Ser9, Arg34, His36, and Ser37. The MDH activity of MJ0490 is made possible by Arg86, which is conserved in MDHs but not in LDHs. The enzymatic assay showed that the MJ0490 protein possesses the fructose-1,6-bisphosphate-activated LDH activity (reduction). Thus the MJ0490 gene product appears to be a novel member of the lactate/malate dehydrogenase family, displaying an LDH scaffold and exhibiting a relaxed substrate and cofactor specificities in NADP(H) and NAD(H)-dependent malate and lactate dehydrogenase reactions. << Less
-
Refolding, characterization and crystal structure of (S)-malate dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix.
Kawakami R., Sakuraba H., Goda S., Tsuge H., Ohshima T.
Tartrate oxidation activity was found in the crude extract of an aerobic hyperthermophilic archaeon Aeropyrum pernix, and the enzyme was identified as (S)-malate dehydrogenase (MDH), which, when produced in Escherichia coli, was mainly obtained as an inactive inclusion body. The inclusion body was ... >> More
Tartrate oxidation activity was found in the crude extract of an aerobic hyperthermophilic archaeon Aeropyrum pernix, and the enzyme was identified as (S)-malate dehydrogenase (MDH), which, when produced in Escherichia coli, was mainly obtained as an inactive inclusion body. The inclusion body was dissolved in 6 M guanidine-HCl and gradually refolded to the active enzyme through dilution of the denaturant. The purified recombinant enzyme consisted of four identical subunits with a molecular mass of about 110 kDa. NADP was preferred as a coenzyme over NAD for (S)-malate oxidation and, unlike MDHs from other sources, this enzyme readily catalyzed the oxidation of (2S,3S)-tartrate and (2S,3R)-tartrate. The tartrate oxidation activity was also observed in MDHs from the hyperthermophilic archaea Methanocaldococcus jannaschii and Archaeoglobus fulgidus, suggesting these hyperthermophilic MDHs loosely bind their substrates. The refolded A. pernix MDH was also crystallized, and the structure was determined at a resolution of 2.9 A. Its overall structure was similar to those of the M. jannaschii, Chloroflexus aurantiacus, Chlorobium vibrioforme and Cryptosporidium parvum [lactate dehydrogenase-like] MDHs with root-mean-square-deviation values between 1.4 and 2.1 A. Consistent with earlier reports, Ala at position 53 was responsible for coenzyme specificity, and the next residue, Arg, was important for NADP binding. Structural comparison revealed that the hyperthermostability of the A. pernix MDH is likely attributable to its smaller cavity volume and larger numbers of ion pairs and ion-pair networks, but the molecular strategy for thermostability may be specific for each enzyme. << Less
Biochim. Biophys. Acta 1794:1496-1504(2009) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.