Reaction participants Show >> << Hide
-
Namehelp_outline
guanosine527 in 16S rRNA
Identifier
RHEA-COMP:10209
Reactive part
help_outline
- Name help_outline GMP residue Identifier CHEBI:74269 Charge -1 Formula C10H11N5O7P Positionhelp_outline 527 SMILEShelp_outline C1(=O)NC(=NC2=C1N=CN2[C@@H]3O[C@H](COP(=O)(*)[O-])[C@@H](O*)[C@H]3O)N 2D coordinates Mol file for the small molecule Search links Involved in 42 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N7-methylguanosine527 in 16S rRNA
Identifier
RHEA-COMP:10210
Reactive part
help_outline
- Name help_outline N7-methylguanosine 5'-phosphate residue Identifier CHEBI:74480 Charge 0 Formula C11H14N5O7P Positionhelp_outline 527 SMILEShelp_outline C1(=O)NC(=NC2=C1[N+](=CN2[C@@H]3O[C@H](COP(=O)(*)[O-])[C@@H](O*)[C@H]3O)C)N 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:42732 | RHEA:42733 | RHEA:42734 | RHEA:42735 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Crystal structure of the Escherichia coli glucose-inhibited division protein B (GidB) reveals a methyltransferase fold.
Romanowski M.J., Bonanno J.B., Burley S.K.
-
Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria.
Okamoto S., Tamaru A., Nakajima C., Nishimura K., Tanaka Y., Tokuyama S., Suzuki Y., Ochi K.
Streptomycin has been an important drug for the treatment of tuberculosis since its discovery in 1944. But numerous strains of Mycobacterium tuberculosis, the bacterial pathogen that causes tuberculosis, are now streptomycin resistant. Although such resistance is often mediated by mutations within ... >> More
Streptomycin has been an important drug for the treatment of tuberculosis since its discovery in 1944. But numerous strains of Mycobacterium tuberculosis, the bacterial pathogen that causes tuberculosis, are now streptomycin resistant. Although such resistance is often mediated by mutations within rrs, a 16S rRNA gene or rpsL, which encodes the ribosomal protein S12, these mutations are found in a limited proportion of clinically isolated streptomycin-resistant M. tuberculosis strains. Here we have succeeded in identifying a mutation that confers low-level streptomycin resistance to bacteria, including M. tuberculosis. We found that mutations within the gene gidB confer low-level streptomycin resistance and are an important cause of resistance found in 33% of resistant M. tuberculosis isolates. We further clarified that the gidB gene encodes a conserved 7-methylguanosine (m(7)G) methyltransferase specific for the 16S rRNA, apparently at position G527 located in the so-called 530 loop. Thus, we have identified gidB as a new streptomycin-resistance locus and uncovered a resistance mechanism that is mediated by loss of a conserved m(7)G modification in 16S rRNA. The clinical significance of M. tuberculosis gidB mutation also is noteworthy, as gidB mutations emerge spontaneously at a high frequency of 10(-6) and, once emerged, result in vigorous emergence of high-level streptomycin-resistant mutants at a frequency more than 2000 times greater than that seen in wild-type strains. Further studies on the precise function of GidB may provide a basis for developing strategies to suppress pathogenic bacteria, including M. tuberculosis. << Less