Reaction participants Show >> << Hide
- Name help_outline (5Z,8Z,11Z,14Z)-eicosatetraenoate Identifier CHEBI:32395 (Beilstein: 5439048) help_outline Charge -1 Formula C20H31O2 InChIKeyhelp_outline YZXBAPSDXZZRGB-DOFZRALJSA-M SMILEShelp_outline CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 83 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline prostaglandin G2 Identifier CHEBI:82629 Charge -1 Formula C20H31O6 InChIKeyhelp_outline SGUKUZOVHSFKPH-YNNPMVKQSA-M SMILEShelp_outline CCCCC[C@H](OO)\C=C\[C@H]1[C@H]2C[C@H](OO2)[C@@H]1C\C=C/CCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:42596 | RHEA:42597 | RHEA:42598 | RHEA:42599 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Reactome help_outline |
Publications
-
Prostaglandin H synthase-2-catalyzed oxygenation of 2-arachidonoylglycerol is more sensitive to peroxide tone than oxygenation of arachidonic acid.
Musee J., Marnett L.J.
The endocannabinoid, 2-arachidonoylglycerol (2-AG), is a selective substrate for the inducible isoform of prostaglandin H synthase (PGHS), PGHS-2. Its turnover leads to the formation of glyceryl esters of prostaglandins (PG-Gs), a subset of which elicits agonism at unique, as yet unidentified, rec ... >> More
The endocannabinoid, 2-arachidonoylglycerol (2-AG), is a selective substrate for the inducible isoform of prostaglandin H synthase (PGHS), PGHS-2. Its turnover leads to the formation of glyceryl esters of prostaglandins (PG-Gs), a subset of which elicits agonism at unique, as yet unidentified, receptors. The k(cat)/K(m) values for oxygenation of arachidonic acid (AA) and 2-AG by PGHS-2 are very similar, but the sensitivities of the two substrates to peroxide-dependent activation have not been compared. 15-Hydroperoxy derivatives of AA and 2-AG were found to be comparable in their ability to serve as substrates for the peroxidase activities of PGHS-2, PGHS-1, and glutathione peroxidase (GPx). They also were comparable in the activation of AA oxygenation by cyanide-inhibited PGHS-2. However, oxygenation of 2-AG was significantly suppressed relative to AA by the presence of GPx and GSH. Furthermore, 2-AG oxygenation by peroxidase-deficient H388YmPGHS-2 was much less efficient than AA oxygenation. Wild-type rates of 2-AG oxygenation were restored by treatment of H388YmPGHS-2 with hydroperoxide derivatives of AA or 2-AG. RNAi silencing of phospholipid hydroperoxide-specific GPx (GPx4) in NIH/3T3 cells led to increases in cellular peroxidation and in the levels of the isoprostane product, 8-epi-PGF(2α). GPx4 silencing led to 2-4-fold increases in PG-G formation but no change in PG formation. Thus, cellular peroxide tone may be an important determinant of the extent of endocannabinoid oxygenation by PGHS-2. << Less
J. Biol. Chem. 287:37383-37394(2012) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system.
Barnett J., Chow J., Ives D., Chiou M., Mackenzie R., Osen E., Nguyen B., Tsing S., Bach C., Freire J. , et al.
Human prostaglandin G/H synthase 1 and 2 were expressed in the baculovirus expression system and purified to high levels. Both enzymes were glycosylated. PGHS-1 appeared to be homogeneous by SDS-PAGE analysis but two closely migrating bands were detected in PGHS-2 preparation which were evidently ... >> More
Human prostaglandin G/H synthase 1 and 2 were expressed in the baculovirus expression system and purified to high levels. Both enzymes were glycosylated. PGHS-1 appeared to be homogeneous by SDS-PAGE analysis but two closely migrating bands were detected in PGHS-2 preparation which were evidently due to heterogeneity in glycosylation. The amino-acid sequence of the N-termini of both isoforms indicated that the signal sequences were efficiently cleaved by the insect cells. The recombinant human PGHS-1 and PGHS-2 possessed both cyclooxygenase and peroxidase activities. Both had high affinities for arachidonate as substrate and underwent self-inactivation during catalysis. The recombinant isoforms were not pharmacologically identical, since some NSAIDs were selective inhibitors of either PGHS-1 or PGHS-2. This is the first report of high levels of expression and purification of human PGHS isoforms. The recombinant enzymes are invaluable in developing potent PGHS-2 selective inhibitors that may be efficacious anti-inflammatory drugs with no or low levels of toxicity. << Less
Biochim. Biophys. Acta 1209:130-139(1994) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Comparison of hydroperoxide initiator requirements for the cyclooxygenase activities of prostaglandin H synthase-1 and -2.
Kulmacz R.J., Wang L.H.
Two isoforms of prostaglandin H synthase have been described: isoform-1 (PGHS-1), which is ascribed a role in basal or housekeeping prostaglandin synthesis; and isoform-2 (PGHS-2), which has been found to be strongly inducible in many tissues and has been associated with inflammatory processes. Re ... >> More
Two isoforms of prostaglandin H synthase have been described: isoform-1 (PGHS-1), which is ascribed a role in basal or housekeeping prostaglandin synthesis; and isoform-2 (PGHS-2), which has been found to be strongly inducible in many tissues and has been associated with inflammatory processes. Recent observations have indicated that cyclooxygenase catalysis by the two isoforms can be differentially regulated when both are present simultaneously (Reddy, S. T., and Herschman, H. R. (1994) J. Biol. Chem. 269, 15473-15480). The requirement of the cyclooxygenase for hydroperoxide initiator has been proposed as an important limit on cellular prostaglandin synthesis (Marshall, P. J., Kulmacz, R. J., and Lands, W. E. M. (1987) J. Biol. Chem. 262, 3510-3517). To compare the levels of hydroperoxide required for cyclooxygenase initiation in the two PGHS isoforms, we have examined the ability of a hydroperoxide scavenger, glutathione peroxidase, to suppress the cyclooxygenase activity of purified preparations of human PGHS-2, ovine PGHS-2, and ovine PGHS-1. Half-maximal prostaglandin synthetic activity was found to require a much lower hydroperoxide level with human PGHS-2 (2.3 nM) and ovine PGHS-2 (2.2 nM) than with ovine PGHS-1 (21 nM). Similar results were obtained when cyclooxygenase activity was monitored by chromatographic analyses of radiolabeled arachidonate metabolites or with oxygen electrode measurements. Mixing four parts of ovine PGHS-1 with one part of human PGHS-2 did not markedly change the sensitivity of the overall cyclooxygenase activity to inhibition by glutathione peroxidase, indicating that the PGHS-1 activity was not easily initiated by PGHS-2 activity in the same vessel. Effective catalysis by PGHS-2 can thus proceed at hydroperoxide levels too low to sustain appreciable catalysis by PGHS-1. This difference in catalytic characteristics provides a biochemical mechanism for differential control of prostaglandin synthesis by the two PGHS isoforms, even when both are present in the same intracellular compartment. << Less
J. Biol. Chem. 270:24019-24023(1995) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides.
Kozak K.R., Crews B.C., Morrow J.D., Wang L.H., Ma Y.H., Weinander R., Jakobsson P.J., Marnett L.J.
Cyclooxygenase-2 (COX-2) action on the endocannabinoids, 2-arachidonylglycerol (2-AG) and anandamide (AEA), generates prostaglandin glycerol esters (PG-G) and ethanolamides (PG-EA), respectively. The diversity of PG-Gs and PG-EAs that can be formed enzymatically following COX-2 oxygenation of endo ... >> More
Cyclooxygenase-2 (COX-2) action on the endocannabinoids, 2-arachidonylglycerol (2-AG) and anandamide (AEA), generates prostaglandin glycerol esters (PG-G) and ethanolamides (PG-EA), respectively. The diversity of PG-Gs and PG-EAs that can be formed enzymatically following COX-2 oxygenation of endocannabinoids was examined in cellular and subcellular systems. In cellular systems, glycerol esters and ethanolamides of PGE(2), PGD(2), and PGF(2alpha) were major products of the endocannabinoid-derived COX-2 products, PGH(2)-G and PGH(2)-EA. The sequential action of purified COX-2 and thromboxane synthase on AEA and 2-AG provided thromboxane A(2) ethanolamide and glycerol ester, respectively. Similarly, bovine prostacyclin synthase catalyzed the isomerization of the intermediate endoperoxides, PGH(2)-G and PGH(2)-EA, to the corresponding prostacyclin derivatives. Quantification of the efficiency of prostaglandin and thromboxane synthase-directed endoperoxide isomerization demonstrated that PGE, PGD, and PGI synthases catalyze the isomerization of PGH(2)-G at rates approaching those observed with PGH(2). In contrast, thromboxane synthase was far more efficient at catalyzing PGH(2) isomerization than at catalyzing the isomerization of PGH(2)-G. These results define the in vitro diversity of endocannabinoid-derived prostanoids and will permit focused investigations into their production and potential biological actions in vivo. << Less
J. Biol. Chem. 277:44877-44885(2002) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.