Reaction participants Show >> << Hide
- Name help_outline D-sorbitol Identifier CHEBI:17924 (Beilstein: 4656395; CAS: 50-70-4) help_outline Charge 0 Formula C6H14O6 InChIKeyhelp_outline FBPFZTCFMRRESA-JGWLITMVSA-N SMILEShelp_outline OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Nπ-phospho-L-histidyl-[protein]
Identifier
RHEA-COMP:9746
Reactive part
help_outline
- Name help_outline Nπ-phospho-L-histidine residue Identifier CHEBI:64837 Charge -2 Formula C6H6N3O4P SMILEShelp_outline C(*)(=O)[C@@H](N*)CC=1N(C=NC1)P([O-])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-sorbitol 6-phosphate Identifier CHEBI:60084 (Beilstein: 5566995) help_outline Charge -2 Formula C6H13O9P InChIKeyhelp_outline GACTWZZMVMUKNG-SLPGGIOYSA-L SMILEShelp_outline OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-histidyl-[protein]
Identifier
RHEA-COMP:9745
Reactive part
help_outline
- Name help_outline L-histidine residue Identifier CHEBI:29979 Charge 0 Formula C6H7N3O SMILEShelp_outline C(*)(=O)[C@@H](N*)CC=1N=CNC1 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:42484 | RHEA:42485 | RHEA:42486 | RHEA:42487 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Proposed topology of the glucitol permeases of Escherichia coli and Clostridium acetobutylicum.
Reizer J., Mitchell W.J., Minton N., Brehm J., Reizer A., Saier M.H. Jr.
-
Nature and properties of hexitol transport systems in Escherichia coli.
Lengeler J.
In Escherichia coli K-12 the naturally occurring hexitols D-mannitol, D-glucitol, and galactitol are taken up and phosphorylated via three distinct transport systems by a mechanism called either group translocation or vectorial phosphorylation. For every system, a membrane-bound enzyme II-complex ... >> More
In Escherichia coli K-12 the naturally occurring hexitols D-mannitol, D-glucitol, and galactitol are taken up and phosphorylated via three distinct transport systems by a mechanism called either group translocation or vectorial phosphorylation. For every system, a membrane-bound enzyme II-complex of the phosphoenolpyruvate-dependent phosphotransferase system has been found, each requiring phosphoenolpyruvate, enzyme I, and HPr or alternatively P-HPr as the phosphate donor. Cells with a constitutive synthesis of all hexitol transport systems but with low P-HPr levels have very low transport and phosphorylating activities in vivo, although 40 to 90% of the enzyme II-complex activities are detected in cell extracts of such mutants. No indications for additional hexitol transport systems, especially for systems able to transport and accumulate free hexitols as in Klebsiella aerogenes, have been found. Substrate Km, and Vmax of the three transport systems for several hexitols and hexitol analogues have been determined by growth rates, transport activities, and in vitro phosphorylating activities. Each system was found to take up several hexitols, but only one hexitol serves as the inducer. This inducer invariably is the substrate with the highest affinity. Since bacterial transport systems, as a general rule, seem to have a relatively broad substrate specificity, in contrast to a more restricted inducer specificity, we propose to name the system inducible by D-mannitol and coded by the gene mtlA the D-mannitol transport system, the system inducible by D-glucitol and coded by gutA the D-glucitol transport system, and the system inducible by galactitol and coded by gatA the galactitol transport system. << Less
J. Bacteriol. 124:39-47(1975) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.