Reaction participants Show >> << Hide
- Name help_outline D-galactose Identifier CHEBI:4139 (Beilstein: 1281605; CAS: 59-23-4,10257-28-0) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline WQZGKKKJIJFFOK-SVZMEOIVSA-N SMILEShelp_outline OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 37 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-galactono-1,5-lactone Identifier CHEBI:15945 (CAS: 15892-28-1) help_outline Charge 0 Formula C6H10O6 InChIKeyhelp_outline PHOQVHQSTUBQQK-MGCNEYSASA-N SMILEShelp_outline OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:42392 | RHEA:42393 | RHEA:42394 | RHEA:42395 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus.
Milburn C.C., Lamble H.J., Theodossis A., Bull S.D., Hough D.W., Danson M.J., Taylor G.L.
The hyperthermophilic archaeon Sulfolobus solfataricus grows optimally above 80 degrees C and utilizes an unusual, promiscuous, non-phosphorylative Entner-Doudoroff pathway to metabolize both glucose and galactose. The first enzyme in this pathway, glucose dehydrogenase, catalyzes the oxidation of ... >> More
The hyperthermophilic archaeon Sulfolobus solfataricus grows optimally above 80 degrees C and utilizes an unusual, promiscuous, non-phosphorylative Entner-Doudoroff pathway to metabolize both glucose and galactose. The first enzyme in this pathway, glucose dehydrogenase, catalyzes the oxidation of glucose to gluconate, but has been shown to have activity with a broad range of sugar substrates, including glucose, galactose, xylose, and L-arabinose, with a requirement for the glucose stereo configuration at the C2 and C3 positions. Here we report the crystal structure of the apo form of glucose dehydrogenase to a resolution of 1.8 A and a complex with its required cofactor, NADP+, to a resolution of 2.3 A. A T41A mutation was engineered to enable the trapping of substrate in the crystal. Complexes of the enzyme with D-glucose and D-xylose are presented to resolutions of 1.6 and 1.5 A, respectively, that provide evidence of selectivity for the beta-anomeric, pyranose form of the substrate, and indicate that this is the productive substrate form. The nature of the promiscuity of glucose dehydrogenase is also elucidated, and a physiological role for this enzyme in xylose metabolism is suggested. Finally, the structure suggests that the mechanism of sugar oxidation by this enzyme may be similar to that described for human sorbitol dehydrogenase. << Less
J. Biol. Chem. 281:14796-14804(2006) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase.
Lamble H.J., Heyer N.I., Bull S.D., Hough D.W., Danson M.J.
The hyperthermophilic Archaeon Sulfolobus solfataricus metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to ... >> More
The hyperthermophilic Archaeon Sulfolobus solfataricus metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to 2-keto-3-deoxygluconate. 2-Keto-3-deoxygluconate (KDG) aldolase then catalyzes the cleavage of 2-keto-3-deoxygluconate to glyceraldehyde and pyruvate. The gene encoding glucose dehydrogenase has been cloned and expressed in Escherichia coli to give a fully active enzyme, with properties indistinguishable from the enzyme purified from S. solfataricus cells. Kinetic analysis revealed the enzyme to have a high catalytic efficiency for both glucose and galactose. KDG aldolase from S. solfataricus has previously been cloned and expressed in E. coli. In the current work its stereoselectivity was investigated by aldol condensation reactions between D-glyceraldehyde and pyruvate; this revealed the enzyme to have an unexpected lack of facial selectivity, yielding approximately equal quantities of 2-keto-3-deoxygluconate and 2-keto-3-deoxygalactonate. The KDG aldolase-catalyzed cleavage reaction was also investigated, and a comparable catalytic efficiency was observed with both compounds. Our evidence suggests that the same enzymes are responsible for the catabolism of both glucose and galactose in this Archaeon. The physiological and evolutionary implications of this observation are discussed in terms of catalytic and metabolic promiscuity. << Less
J. Biol. Chem. 278:34066-34072(2003) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus.
Giardina P., de Biasi M.G., de Rosa M., Gambacorta A., Buonocore V.
Glucose dehydrogenase has been purified to homogeneity from cell extracts of the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. The enzyme utilizes both NAD+ and NADP+ as coenzyme and catalyses the oxidation of several monosaccharides to the corresponding glyconic acid. Substra ... >> More
Glucose dehydrogenase has been purified to homogeneity from cell extracts of the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. The enzyme utilizes both NAD+ and NADP+ as coenzyme and catalyses the oxidation of several monosaccharides to the corresponding glyconic acid. Substrate specificity and oxidation rate depend on the coenzyme present; when NAD+ is used, the enzyme binds and oxidizes specifically sugars presenting equatorial orientation of hydroxy groups at C-2, C-3 and C-4. The Mr of the native enzyme is 124,000 and decreases to about 60,000 in the presence of 6 M-guanidinium chloride and to about 30,000 in the presence of 5% (w/v) SDS. The enzyme shows maximal activity at pH 9, 77 degrees C and 20 mM-Mg2+, -Mn2+ or -Ca2+ and is fairly stable in the presence of chaotropic agents and water-miscible organic solvents such as methanol or acetone. << Less
Biochem. J. 239:517-522(1986) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.