Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline oxidized coenzyme F420-2 Identifier CHEBI:57922 Charge -5 Formula C29H31N5O18P InChIKeyhelp_outline BEUZRXRCQLIWPE-NALJQGANSA-I SMILEShelp_outline C[C@H](OP([O-])(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)Cn1c2cc(O)ccc2cc2c1nc(=O)[n-]c2=O)C(=O)N[C@@H](CCC(=O)N[C@@H](CCC([O-])=O)C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamate Identifier CHEBI:29985 (CAS: 11070-68-1) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-VKHMYHEASA-M SMILEShelp_outline [NH3+][C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 244 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline oxidized coenzyme α-F420-3 Identifier CHEBI:59923 Charge -6 Formula C34H37N6O21P InChIKeyhelp_outline RFMKQXORIIBSKL-LROHGRLLSA-H SMILEShelp_outline C[C@H](OP([O-])(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)Cn1c2cc(O)ccc2cc2c1nc(=O)[n-]c2=O)C(=O)N[C@@H](CCC(=O)N[C@@H](CCC(=O)N[C@@H](CCC([O-])=O)C([O-])=O)C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:42332 | RHEA:42333 | RHEA:42334 | RHEA:42335 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
CofE catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in Methanococcus jannaschii.
Li H., Graupner M., Xu H., White R.H.
The protein product of the Methanococcus jannaschii MJ0768 gene has been expressed in Escherichia coli, purified to homogeneity, and shown to catalyze the GTP-dependent addition of two l-glutamates to the l-lactyl phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F(420)-0) to form F(42 ... >> More
The protein product of the Methanococcus jannaschii MJ0768 gene has been expressed in Escherichia coli, purified to homogeneity, and shown to catalyze the GTP-dependent addition of two l-glutamates to the l-lactyl phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F(420)-0) to form F(420)-0-glutamyl-glutamate (F(420)-2). Since the reaction is the fifth step in the biosynthesis of coenzyme F(420), the enzyme has been designated as CofE, the product of the cofE gene. Gel filtration chromatography indicates CofE is a dimer. The enzyme has no recognized sequence similarity to any previously characterized proteins. The enzyme has an absolute requirement for a divalent metal ion and a monovalent cation. Among the metal ions tested, a mixture of Mn(2+), Mg(2+), and K(+) is the most effective. CofE catalyzes amide bond formation with the cleavage of GTP to GDP and inorganic phosphate, likely involving the activation of the free carboxylate group of F(420)-0 to give an acyl phosphate intermediate. Evidence for the occurrence of this intermediate is presented. A reaction mechanism for the enzyme is proposed and compared with other members of the ADP-forming amide bond ligase family. << Less
Biochemistry 42:9771-9778(2003) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Glutathione synthetase homologs encode alpha-L-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses.
Li H., Xu H., Graham D.E., White R.H.
Proteins in the ATP-grasp superfamily of amide bond-forming ligases have evolved to function in a number of unrelated biosynthetic pathways. Previously identified homologs encoding glutathione synthetase, d-alanine:d-alanine ligase and the bacterial ribosomal protein S6:glutamate ligase have been ... >> More
Proteins in the ATP-grasp superfamily of amide bond-forming ligases have evolved to function in a number of unrelated biosynthetic pathways. Previously identified homologs encoding glutathione synthetase, d-alanine:d-alanine ligase and the bacterial ribosomal protein S6:glutamate ligase have been vertically inherited within certain organismal lineages. Although members of this specificity-diverse superfamily share a common reaction mechanism, the nonoverlapping set of amino acid and peptide substrates recognized by each family provided few clues as to their evolutionary history. Two members of this family have been identified in the hyperthermophilic marine archaeon Methanococcus jannaschii and shown to catalyze the final reactions in two coenzyme biosynthetic pathways. The MJ0620 (mptN) locus encodes a tetrahydromethanopterin:alpha-l-glutamate ligase that forms tetrahydrosarcinapterin, a single carbon-carrying coenzyme. The MJ1001 (cofF) locus encodes a gamma-F420-2:alpha-l-glutamate ligase, which caps the gamma-glutamyl tail of the hydride carrier coenzyme F420. These two genes share a common ancestor with the ribosomal protein S6:glutamate ligase and a putative alpha-aminoadipate ligase, defining the first group of ATP-grasp enzymes with a shared amino acid substrate specificity. As in glutathione biosynthesis, two unrelated amino acid ligases catalyze sequential reactions in coenzyme F420 polyglutamate formation: a gamma-glutamyl ligase adds 1-3 l-glutamate residues and the ATP-grasp-type ligase described here caps the chain with a single alpha-linked l-glutamate residue. The analogous pathways for glutathione, F420, folate, and murein peptide biosyntheses illustrate convergent evolution of nonribosomal peptide biosynthesis through the recruitment of single-step amino acid ligases. << Less
Proc. Natl. Acad. Sci. U.S.A. 100:9785-9790(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.