Reaction participants Show >> << Hide
- Name help_outline 9-cis-retinal Identifier CHEBI:78273 (CAS: 514-85-2) help_outline Charge 0 Formula C20H28O InChIKeyhelp_outline NCYCYZXNIZJOKI-MKOSUFFBSA-N SMILEShelp_outline C/C(/C=C/C=C(/C)\C=C\C1=C(C)CCCC1(C)C)=C\C=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 9-cis-retinoate Identifier CHEBI:78630 Charge -1 Formula C20H27O2 InChIKeyhelp_outline SHGAZHPCJJPHSC-ZVCIMWCZSA-M SMILEShelp_outline C\C(\C=C\C1=C(C)CCCC1(C)C)=C\C=C\C(\C)=C\C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:42084 | RHEA:42085 | RHEA:42086 | RHEA:42087 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
cDNA cloning and expression of a human aldehyde dehydrogenase (ALDH) active with 9-cis-retinal and identification of a rat ortholog, ALDH12.
Lin M., Napoli J.L.
This report describes the isolation of a heretofore uncharacterized aldehyde dehydrogenase (ALDH) with retinal dehydrogenase activity from rat kidney and the cloning and expression of a cDNA that encodes its human ortholog, the previously unknown ALDH12. The human ALDH12 cDNA predicts a 487-residu ... >> More
This report describes the isolation of a heretofore uncharacterized aldehyde dehydrogenase (ALDH) with retinal dehydrogenase activity from rat kidney and the cloning and expression of a cDNA that encodes its human ortholog, the previously unknown ALDH12. The human ALDH12 cDNA predicts a 487-residue protein with the 23 invariant amino acids, four conserved regions, cofactor binding motif (G(209)XGX(3)G), and active site cysteine residue (Cys(287)) that typify members of the ALDH superfamily. ALDH12 seems at least as efficient (V(m)/K(m)) in converting 9-cis-retinal into the retinoid X receptor ligand 9-cis-retinoic acid as two previously identified ALDHs with 9-cis-retinal dehydrogenase activity, rat retinal dehydrogenase (RALDH) 1 and RALDH2. ALDH12, however, has approximately 40-fold higher activity with 9-cis-retinal than with all-trans-retinal, whereas RALDH1 and RALDH2 have equivalent and approximately 4-fold less efficiencies for 9-cis-retinal versus all-trans-retinal, respectively. Therefore, ALDH12 is the first known ALDH to show a preference for 9-cis-retinal relative to all-trans-retinal. Evidence consistent with the possibility that ALDH12 could function in a pathway of 9-cis-retinoic acid biosynthesis in vivo includes biosynthesis of 9-cis-retinoic acid from 9-cis-retinol in cells co-transfected with cDNAs encoding ALDH12 and the 9-cis-retinol/androgen dehydrogenase, cis-retinoid/androgen dehydrogenase type 1. Intense ALDH12 mRNA expression in adult and fetal liver and kidney, two organs that reportedly have relatively high concentrations of 9-cis-retinol, reinforces this notion. << Less
-
Cloning of monkey RALDH1 and characterization of retinoid metabolism in monkey kidney proximal tubule cells.
Brodeur H., Gagnon I., Mader S., Bhat P.V.
All-trans and 9-cis retinoic acids function as ligands for retinoic acid receptors (RARs and RXRs), which are ligand-dependent transcription factors and play important roles in development and cellular differentiation. Several retinal dehydrogenases are likely to contribute to the production of al ... >> More
All-trans and 9-cis retinoic acids function as ligands for retinoic acid receptors (RARs and RXRs), which are ligand-dependent transcription factors and play important roles in development and cellular differentiation. Several retinal dehydrogenases are likely to contribute to the production of all-trans and 9-cis RAs in vivo, but their respective roles in different tissues are still poorly characterized. We have previously characterized and cloned from kidney tissues the rat retinal dehydrogenase type 1 (RALDH1), which oxidizes all-trans and 9-cis retinal with high efficiency but is inactive with 13-cis retinal. Here we have characterized the retinal-oxidizing activity in monkey JTC12 cells, which are derived from kidney proximal tubules. In vitro assay of cell lysates revealed the presence of a NAD+-dependent dehydrogenase that catalyzed the oxidation of all-trans, 9-cis, and 13-cis retinal. Northern blot analysis of JTC12 RNAs and cloning by reverse transcription-polymerase chain reaction demonstrated expression of a monkey homolog of RALDH1. Bacterially expressed JTC12 RALDH1 catalyzed conversion of all three retinal isomers, with a higher catalytic efficiency for 9-cis retinal than for all-trans and 13-cis retinal. Accordingly, live JTC12 produced 9-cis retinoic acid more efficiently than all-trans retinoic acid from their respective retinal precursors. Only metabolites corresponding to the same steric conformation were formed from 9-cis or all-trans retinal, indicating a lack of detectable isomerizing activity in JTC12 cells. << Less
J. Lipid Res. 44:303-313(2003) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
A novel isoenzyme of aldehyde dehydrogenase specifically involved in the biosynthesis of 9-cis and all-trans retinoic acid.
Labrecque J., Dumas F., Lacroix A., Bhat P.V.
The pleiotropic effects of retinoids are mediated by two families of nuclear receptors: RAR (retinoic acid receptors) and RXR (retinoid X receptors). 9-cis-Retinoic acid is a specific ligand for RXR receptors, whereas either 9-cis- or all-trans-retinoic acid activates the RAR receptor family. The ... >> More
The pleiotropic effects of retinoids are mediated by two families of nuclear receptors: RAR (retinoic acid receptors) and RXR (retinoid X receptors). 9-cis-Retinoic acid is a specific ligand for RXR receptors, whereas either 9-cis- or all-trans-retinoic acid activates the RAR receptor family. The existence of RXRs suggests a new role for isomerization in the biology of retinoic acid. We report here the identification of an aldehyde dehydrogenase in the rat kidney that catalysed the oxidation of 9-cis- and all-trans-retinal to corresponding retinoic acids with high efficiency, 9-cis-retinal being 2-fold more active than all-trans-retinal. Based on several criteria, such as amino acid sequence, pH optimum, and inhibition by chloral hydrate, this enzyme was found to be a novel isoenzyme of aldehyde dehydrogenase. 9-cis-Retinol, the precursor for the biosynthesis of 9-cis-retinal was identified in the rat kidney. The occurrence of endogenous 9-cis-retinol and the existence of specific dehydrogenase which participates in the catalysis of 9-cis-retinal suggest that all-trans-retinoi(d) isomerization to 9-cis-retinoi(d) occurs at the retinol level, analogous to all-trans-retinol isomerization to 11-cis-retinol in the visual cycle. << Less
Biochem. J. 305:681-684(1995) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.