Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline 5α-androstane-3α,17β-diol Identifier CHEBI:36713 (Beilstein: 2694353; CAS: 1852-53-5) help_outline Charge 0 Formula C19H32O2 InChIKeyhelp_outline CBMYJHIOYJEBSB-KHOSGYARSA-N SMILEShelp_outline [H][C@@]12CC[C@@]3([H])[C@]4([H])CC[C@H](O)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CC[C@@H](O)C2 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 17β-hydroxy-5α-androstan-3-one Identifier CHEBI:16330 (CAS: 521-18-6) help_outline Charge 0 Formula C19H30O2 InChIKeyhelp_outline NVKAWKQGWWIWPM-ABEVXSGRSA-N SMILEShelp_outline [H][C@@]12CC[C@@]3([H])[C@]4([H])CC[C@H](O)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CCC(=O)C2 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:42004 | RHEA:42005 | RHEA:42006 | RHEA:42007 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
cDNA cloning and characterization of a cis-retinol/3alpha-hydroxysterol short-chain dehydrogenase.
Chai X., Zhai Y., Napoli J.L.
We report a mouse cDNA that encodes a 317-amino acid short-chain dehydrogenase which recognizes as substrates 9-cis-retinol, 11-cis-retinol, 5alpha-androstan-3alpha,17beta-diol, and 5alpha-androstan-3alpha-ol-17-one. This cis-retinol/androgen dehydrogenase (CRAD) shares closest amino acid similari ... >> More
We report a mouse cDNA that encodes a 317-amino acid short-chain dehydrogenase which recognizes as substrates 9-cis-retinol, 11-cis-retinol, 5alpha-androstan-3alpha,17beta-diol, and 5alpha-androstan-3alpha-ol-17-one. This cis-retinol/androgen dehydrogenase (CRAD) shares closest amino acid similarity with mouse retinol dehydrogenase isozymes types 1 and 2 (86 and 91%, respectively). Recombinant CRAD uses NAD+ as its preferred cofactor and exhibits cooperative kinetics for cis-retinoids, but Michaelis-Menten kinetics for 3alpha-hydroxysterols. Unlike recombinant retinol dehydrogenase isozymes, recombinant CRAD was inhibited by 4-methylpyrazole, was not stimulated by ethanol, and did not require phosphatidylcholine for optimal activity. CRAD mRNA was expressed intensely in kidney and liver, in contrast to retinol dehydrogenase isozymes, which show strong mRNA expression only in liver. CRAD mRNA expression was widespread (relative abundance): kidney (100) > liver (92) > small intestine (9) = heart (9) > retinal pigment epithelium and sclera (4.5) > brain (2) > retina and vitreous (1.6) > spleen (0.7) > testis (0.6) > lung (0.4). CRAD may catalyze the first step in an enzymatic pathway from 9-cis-retinol to generate the retinoid X receptor ligand 9-cis-retinoic acid and/or may regenerate dihydrotestosterone from its catabolite 5alpha-androstan-3alpha,17beta-diol. These data also illustrate the multifunctional nature of short-chain dehydrogenases and provide a potential mechanism for androgen-retinoid interactions. << Less
J. Biol. Chem. 272:33125-33131(1997) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Expanded substrate screenings of human and Drosophila type 10 17beta-hydroxysteroid dehydrogenases (HSDs) reveal multiple specificities in bile acid and steroid hormone metabolism: characterization of multifunctional 3alpha/7alpha/7beta/17beta/20beta/21-HSD.
Shafqat N., Marschall H.U., Filling C., Nordling E., Wu X.Q., Bjork L., Thyberg J., Martensson E., Salim S., Jornvall H., Oppermann U.
17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyse the conversion of 17beta-OH (-hydroxy)/17-oxo groups of steroids, and are essential in mammalian hormone physiology. At present, eleven 17beta-HSD isoforms have been defined in mammals, with different tissue-expression and substrate-conve ... >> More
17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyse the conversion of 17beta-OH (-hydroxy)/17-oxo groups of steroids, and are essential in mammalian hormone physiology. At present, eleven 17beta-HSD isoforms have been defined in mammals, with different tissue-expression and substrate-conversion patterns. We analysed 17beta-HSD type 10 (17beta-HSD10) from humans and Drosophila, the latter known to be essential in development. In addition to the known hydroxyacyl-CoA dehydrogenase, and 3alpha-OH and 17beta-OH activities with sex steroids, we here demonstrate novel activities of 17beta-HSD10. Both species variants oxidize the 20beta-OH and 21-OH groups in C21 steroids, and act as 7beta-OH dehydrogenases of ursodeoxycholic or isoursodeoxycholic acid (also known as 7beta-hydroxylithocholic acid or 7beta-hydroxyisolithocholic acid respectively). Additionally, the human orthologue oxidizes the 7alpha-OH of chenodeoxycholic acid (5beta-cholanic acid, 3alpha,7alpha-diol) and cholic acid (5beta-cholanic acid). These novel substrate specificities are explained by homology models based on the orthologous rat crystal structure, showing a wide hydrophobic cleft, capable of accommodating steroids in different orientations. These properties suggest that the human enzyme is involved in glucocorticoid and gestagen catabolism, and participates in bile acid isomerization. Confocal microscopy and electron microscopy studies reveal that the human form is localized to mitochondria, whereas Drosophila 17beta-HSD10 shows a cytosolic localization pattern, possibly due to an N-terminal sequence difference that in human 17beta-HSD10 constitutes a mitochondrial targeting signal, extending into the Rossmann-fold motif. << Less
Biochem. J. 376:49-60(2003) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
-
Activity of human 11-cis-retinol dehydrogenase (Rdh5) with steroids and retinoids and expression of its mRNA in extra-ocular human tissue.
Wang J., Chai X., Eriksson U., Napoli J.L.
This report describes the activity of recombinant human Rdh5 (11-cis-retinol dehydrogenase) with steroids and retinoids and expression of the Rdh5 mRNA in extra-ocular human tissue. The data show that Rdh5 catalyses 9-cis-retinol metabolism equally efficiently as 11-cis-retinol metabolism and reco ... >> More
This report describes the activity of recombinant human Rdh5 (11-cis-retinol dehydrogenase) with steroids and retinoids and expression of the Rdh5 mRNA in extra-ocular human tissue. The data show that Rdh5 catalyses 9-cis-retinol metabolism equally efficiently as 11-cis-retinol metabolism and recognizes 5alpha-androstan-3alpha,17beta-diol and androsterone as substrates (3alpha-hydroxysteroid dehydrogenase activity), but not testosterone, dihydrotestosterone, oestradiol and corticosterone (lack of 17beta-hydroxysteroid and 11beta-hydroxysteroid dehydrogenase activities). Rdh5 mRNA expression was widespread in extra-ocular tissues with human liver (100% relative expression in extra-ocular tissues only) and mammary gland (97% relative to liver) showing the most intense signals. Other noteworthy relatively intense expression sites included colon (45%), thymus (43%), small intestine (39%), kidney (37%), bladder (29%), pancreas and spleen (28% each), heart (26%), uterus and ovary (25% each), testis (22%) and spinal cord (24%). Human fetal tissues also expressed Rdh5 with fetal liver showing the most intense expression among the fetal tissues (20%). Considered along with the identical nucleotide sequences in the untranslated regions of human Rdh5 and human 9-cis-retinol dehydrogenase cDNAs and the nearly identical nucleotide sequences overall (99% identity), the current results suggest that the two cDNAs represent a single gene product. << Less
Biochem. J. 338:23-27(1999) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Characterization of a novel type of human microsomal 3alpha-hydroxysteroid dehydrogenase. Unique tissue distribution and catalytic properties.
Chetyrkin S.V., Belyaeva O.V., Gough W.H., Kedishvili N.Y.
We report characterization of a novel member of the short chain dehydrogenase/reductase superfamily. The 1513-base pair cDNA encodes a 319-amino acid protein. The corresponding gene spans over 26 kilobase pairs on chromosome 2 and contains five exons. The recombinant protein produced using the bac ... >> More
We report characterization of a novel member of the short chain dehydrogenase/reductase superfamily. The 1513-base pair cDNA encodes a 319-amino acid protein. The corresponding gene spans over 26 kilobase pairs on chromosome 2 and contains five exons. The recombinant protein produced using the baculovirus system is localized in the microsomal fraction of Sf9 cells and is an integral membrane protein with cytosolic orientation of its catalytic domain. The enzyme exhibits an oxidoreductase activity toward hydroxysteroids with NAD(+) and NADH as the preferred cofactors. The enzyme is most efficient as a 3alpha-hydroxysteroid dehydrogenase, converting 3alpha-tetrahydroprogesterone (allopregnanolone) to dihydroprogesterone and 3alpha-androstanediol to dihydrotestosterone with similar catalytic efficiency (V(max) values of 13-14 nmol/min/mg microsomal protein and K(m) values of 5-7 microm). Despite approximately 44-47% sequence identity with retinol/3alpha-hydroxysterol dehydrogenases, the enzyme is not active toward retinols. The corresponding message is abundant in human trachea and is present at lower levels in the spinal cord, bone marrow, brain, heart, colon, testis, placenta, lung, and lymph node. Thus, the new short chain dehydrogenase represents a novel type of microsomal NAD(+)-dependent 3alpha-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. << Less
J. Biol. Chem. 276:22278-22286(2001) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Further characterization of human microsomal 3alpha-hydroxysteroid dehydrogenase.
Chetyrkin S.V., Hu J., Gough W.H., Dumaual N., Kedishvili N.Y.
This manuscript reports further characterization of the recently discovered human short-chain alcohol dehydrogenase, proposed to oxidize 3alpha-androstanediol to dihydrotestosterone in testis and prostate (M. G. Biswas and D. W. Russell, 1997, J. Biol. Chem. 272, 15959-15966). Enzyme expressed usi ... >> More
This manuscript reports further characterization of the recently discovered human short-chain alcohol dehydrogenase, proposed to oxidize 3alpha-androstanediol to dihydrotestosterone in testis and prostate (M. G. Biswas and D. W. Russell, 1997, J. Biol. Chem. 272, 15959-15966). Enzyme expressed using the Baculovirus System localized in the microsomal fraction and catalyzed oxidation and reduction of the functional groups on steroids at carbons 3 and 17. Autoradiography assays revealed that the enzyme was most efficient as a 3alpha-hydroxysteroid oxidoreductase. High affinity of the enzyme for NADH (Km of 0.18 microM), lack of stereospecificity in the reductive direction, and poor efficiency for 3beta-versus 3alpha-hydroxyl oxidation could account for the observed transient accumulation of 3beta-stereoisomers in the oxidative reaction. Consistent with the 65% sequence identity with RoDH dehydrogenases, the enzyme oxidized all-trans-retinol with the Km value of 3.2 microM and Vmax value of 1.2 nmol/min per milligram microsomes. 13-cis-Retinol and all-trans-retinol bound to the cellular retinol-binding protein were not substrates. Neurosteroid allopregnanolone was a better substrate than all-trans-retinol with the Km and Vmax values of 0.24 microM and 14.7 nmol/min per milligram microsomes. Northern blot analysis revealed that the corresponding mRNA was present in adult human brain (caudate nucleus, amygdala, hippocampus, substantia nigra, thalamus) and spinal cord in addition to other tissues. The message was also detected in fetal lung, liver, and brain. Antibodies against the enzyme recognized a protein of approximately 35 kDa in the particulate fraction of human tissues. This study presents new information about enzymatic properties, substrate specificity, and tissue distribution of this enzyme, and provides a better insight into its possible physiological function(s). << Less
Arch. Biochem. Biophys. 386:1-10(2001) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones.
Penning T.M., Burczynski M.E., Jez J.M., Hung C.F., Lin H.K., Ma H., Moore M., Palackal N., Ratnam K.
The kinetic parameters, steroid substrate specificity and identities of reaction products were determined for four homogeneous recombinant human 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) isoforms of the aldo-keto reductase (AKR) superfamily. The enzymes correspond to type 1 3alpha-HSD (AKR1 ... >> More
The kinetic parameters, steroid substrate specificity and identities of reaction products were determined for four homogeneous recombinant human 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) isoforms of the aldo-keto reductase (AKR) superfamily. The enzymes correspond to type 1 3alpha-HSD (AKR1C4), type 2 3alpha(17beta)-HSD (AKR1C3), type 3 3alpha-HSD (AKR1C2) and 20alpha(3alpha)-HSD (AKR1C1), and share at least 84% amino acid sequence identity. All enzymes acted as NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductases and as 3alpha-, 17beta- and 20alpha-hydroxysteroid oxidases. The functional plasticity of these isoforms highlights their ability to modulate the levels of active androgens, oestrogens and progestins. Salient features were that AKR1C4 was the most catalytically efficient, with k(cat)/K(m) values for substrates that exceeded those obtained with other isoforms by 10-30-fold. In the reduction direction, all isoforms inactivated 5alpha-dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one; 5alpha-DHT) to yield 5alpha-androstane-3alpha,17beta-diol (3alpha-androstanediol). However, only AKR1C3 reduced Delta(4)-androstene-3,17-dione to produce significant amounts of testosterone. All isoforms reduced oestrone to 17beta-oestradiol, and progesterone to 20alpha-hydroxy-pregn-4-ene-3,20-dione (20alpha-hydroxyprogesterone). In the oxidation direction, only AKR1C2 converted 3alpha-androstanediol to the active hormone 5alpha-DHT. AKR1C3 and AKR1C4 oxidized testosterone to Delta(4)-androstene-3,17-dione. All isoforms oxidized 17beta-oestradiol to oestrone, and 20alpha-hydroxyprogesterone to progesterone. Discrete tissue distribution of these AKR1C enzymes was observed using isoform-specific reverse transcriptase-PCR. AKR1C4 was virtually liver-specific and its high k(cat)/K(m) allows this enzyme to form 5alpha/5beta-tetrahydrosteroids robustly. AKR1C3 was most prominent in the prostate and mammary glands. The ability of AKR1C3 to interconvert testosterone with Delta(4)-androstene-3,17-dione, but to inactivate 5alpha-DHT, is consistent with this enzyme eliminating active androgens from the prostate. In the mammary gland, AKR1C3 will convert Delta(4)-androstene-3,17-dione to testosterone (a substrate aromatizable to 17beta-oestradiol), oestrone to 17beta-oestradiol, and progesterone to 20alpha-hydroxyprogesterone, and this concerted reductive activity may yield a pro-oesterogenic state. AKR1C3 is also the dominant form in the uterus and is responsible for the synthesis of 3alpha-androstanediol which has been implicated as a parturition hormone. The major isoforms in the brain, capable of synthesizing anxiolytic steroids, are AKR1C1 and AKR1C2. These studies are in stark contrast with those in rat where only a single AKR with positional- and stereo-specificity for 3alpha-hydroxysteroids exists. << Less
Biochem. J. 351:67-77(2000) [PubMed] [EuropePMC]
This publication is cited by 15 other entries.
-
Human cytosolic 3alpha-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3beta-hydroxysteroid dehydrogenase activity: implications for steroid hormone metabolism and action.
Steckelbroeck S., Jin Y., Gopishetty S., Oyesanmi B., Penning T.M.
The source of NADPH-dependent cytosolic 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity is unknown to date. This important reaction leads e.g. to the reduction of the potent androgen 5alpha-dihydrotestosterone (DHT) into inactive 3beta-androstanediol (3beta-Diol). Four human cytosolic aldo ... >> More
The source of NADPH-dependent cytosolic 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity is unknown to date. This important reaction leads e.g. to the reduction of the potent androgen 5alpha-dihydrotestosterone (DHT) into inactive 3beta-androstanediol (3beta-Diol). Four human cytosolic aldo-keto reductases (AKR1C1-AKR1C4) are known to act as non-positional-specific 3alpha-/17beta-/20alpha-HSDs. We now demonstrate that AKR1Cs catalyze the reduction of DHT into both 3alpha- and 3beta-Diol (established by (1)H NMR spectroscopy). The rates of 3alpha-versus 3beta-Diol formation varied significantly among the isoforms, but with each enzyme both activities were equally inhibited by the nonsteroidal anti-inflammatory drug flufenamic acid. In vitro, AKR1Cs also expressed substantial 3alpha[17beta]-hydroxysteroid oxidase activity with 3alpha-Diol as the substrate. However, in contrast to the 3-ketosteroid reductase activity of the enzymes, their hydroxysteroid oxidase activity was potently inhibited by low micromolar concentrations of the opposing cofactor (NADPH). This indicates that in vivo all AKR1Cs will preferentially work as reductases. Human hepatoma (HepG2) cells (which lack 3beta-HSD/Delta(5-4) ketosteroid isomerase mRNA expression, but express AKR1C1-AKR1C3) were able to convert DHT into 3alpha- and 3beta-Diol. This conversion was inhibited by flufenamic acid establishing the in vivo significance of the 3alpha/3beta-HSD activities of the AKR1C enzymes. Molecular docking simulations using available crystal structures of AKR1C1 and AKR1C2 demonstrated how 3alpha/3beta-HSD activities are achieved. The observation that AKR1Cs are a source of 3beta-tetrahydrosteroids is of physiological significance because: (i) the formation of 3beta-Diol (in contrast to 3alpha-Diol) is virtually irreversible, (ii) 3beta-Diol is a pro-apoptotic ligand for estrogen receptor beta, and (iii) 3beta-tetrahydrosteroids act as gamma-aminobutyric acid type A receptor antagonists. << Less
J. Biol. Chem. 279:10784-10795(2004) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
cDNA cloning and characterization of a new human microsomal NAD+-dependent dehydrogenase that oxidizes all-trans-retinol and 3alpha-hydroxysteroids.
Gough W.H., VanOoteghem S., Sint T., Kedishvili N.Y.
We report the cDNA sequence and catalytic properties of a new member of the short chain dehydrogenase/reductase superfamily. The 1134-base pair cDNA isolated from the human liver cDNA library encodes a 317-amino acid protein, retinol dehydrogenase 4 (RoDH-4), which exhibits the strongest similarit ... >> More
We report the cDNA sequence and catalytic properties of a new member of the short chain dehydrogenase/reductase superfamily. The 1134-base pair cDNA isolated from the human liver cDNA library encodes a 317-amino acid protein, retinol dehydrogenase 4 (RoDH-4), which exhibits the strongest similarity with rat all-trans-retinol dehydrogenases RoDH-1, RoDH-2, and RoDH-3, and mouse cis-retinol/androgen dehydrogenase (</=73% identity). The mRNA for RoDH-4 is abundant in adult liver, where it is translated into RoDH-4 protein, which is associated with microsomal membranes, as evidenced by Western blot analysis. Significant amounts of RoDH-4 message are detected in fetal liver and lung. Recombinant RoDH-4, expressed in microsomes of Sf9 insect cells using BacoluGold Baculovirus system, oxidizes all-trans-retinol and 13-cis-retinol to corresponding aldehydes and oxidizes the 3alpha-hydroxysteroids androstane-diol and androsterone to dihydrotestosterone and androstanedione, respectively. NAD+ and NADH are the preferred cofactors, with apparent Km values 250-1500 times lower than those for NADP+ and NADPH. All-trans-retinol and 13-cis-retinol inhibit RoDH-4 catalyzed oxidation of androsterone with apparent Ki values of 5.8 and 3.5 microM, respectively. All-trans-retinol bound to cellular retinol-binding protein (type I) exhibits a similar Ki value of 3.6 microM. Unliganded cellular retinol-binding protein has no effect on RoDH activity. Citral and acyclic isoprenoids also act as inhibitors of RoDH-4 activity. Ethanol is not inhibitory. Thus, we have identified and characterized a sterol/retinol-oxidizing short chain dehydrogenase/reductase that prefers NAD+ and recognizes all-trans-retinol as substrate. RoDH-4 can potentially contribute to the biosynthesis of two powerful modulators of gene expression: retinoic acid from retinol and dihydrotestosterone from 3alpha-androstane-diol. << Less
J. Biol. Chem. 273:19778-19785(1998) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.