Reaction participants Show >> << Hide
- Name help_outline 17β-hydroxy-5α-androstan-3-one Identifier CHEBI:16330 (CAS: 521-18-6) help_outline Charge 0 Formula C19H30O2 InChIKeyhelp_outline NVKAWKQGWWIWPM-ABEVXSGRSA-N SMILEShelp_outline [H][C@@]12CC[C@@]3([H])[C@]4([H])CC[C@H](O)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CCC(=O)C2 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5α-androstan-3,17-dione Identifier CHEBI:15994 (CAS: 846-46-8) help_outline Charge 0 Formula C19H28O2 InChIKeyhelp_outline RAJWOBJTTGJROA-WZNAKSSCSA-N SMILEShelp_outline [H][C@@]12CC[C@@]3([H])[C@]4([H])CCC(=O)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CCC(=O)C2 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:41992 | RHEA:41993 | RHEA:41994 | RHEA:41995 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Expanded substrate screenings of human and Drosophila type 10 17beta-hydroxysteroid dehydrogenases (HSDs) reveal multiple specificities in bile acid and steroid hormone metabolism: characterization of multifunctional 3alpha/7alpha/7beta/17beta/20beta/21-HSD.
Shafqat N., Marschall H.U., Filling C., Nordling E., Wu X.Q., Bjork L., Thyberg J., Martensson E., Salim S., Jornvall H., Oppermann U.
17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyse the conversion of 17beta-OH (-hydroxy)/17-oxo groups of steroids, and are essential in mammalian hormone physiology. At present, eleven 17beta-HSD isoforms have been defined in mammals, with different tissue-expression and substrate-conve ... >> More
17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyse the conversion of 17beta-OH (-hydroxy)/17-oxo groups of steroids, and are essential in mammalian hormone physiology. At present, eleven 17beta-HSD isoforms have been defined in mammals, with different tissue-expression and substrate-conversion patterns. We analysed 17beta-HSD type 10 (17beta-HSD10) from humans and Drosophila, the latter known to be essential in development. In addition to the known hydroxyacyl-CoA dehydrogenase, and 3alpha-OH and 17beta-OH activities with sex steroids, we here demonstrate novel activities of 17beta-HSD10. Both species variants oxidize the 20beta-OH and 21-OH groups in C21 steroids, and act as 7beta-OH dehydrogenases of ursodeoxycholic or isoursodeoxycholic acid (also known as 7beta-hydroxylithocholic acid or 7beta-hydroxyisolithocholic acid respectively). Additionally, the human orthologue oxidizes the 7alpha-OH of chenodeoxycholic acid (5beta-cholanic acid, 3alpha,7alpha-diol) and cholic acid (5beta-cholanic acid). These novel substrate specificities are explained by homology models based on the orthologous rat crystal structure, showing a wide hydrophobic cleft, capable of accommodating steroids in different orientations. These properties suggest that the human enzyme is involved in glucocorticoid and gestagen catabolism, and participates in bile acid isomerization. Confocal microscopy and electron microscopy studies reveal that the human form is localized to mitochondria, whereas Drosophila 17beta-HSD10 shows a cytosolic localization pattern, possibly due to an N-terminal sequence difference that in human 17beta-HSD10 constitutes a mitochondrial targeting signal, extending into the Rossmann-fold motif. << Less
Biochem. J. 376:49-60(2003) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
-
Characterization of a novel type of human microsomal 3alpha-hydroxysteroid dehydrogenase. Unique tissue distribution and catalytic properties.
Chetyrkin S.V., Belyaeva O.V., Gough W.H., Kedishvili N.Y.
We report characterization of a novel member of the short chain dehydrogenase/reductase superfamily. The 1513-base pair cDNA encodes a 319-amino acid protein. The corresponding gene spans over 26 kilobase pairs on chromosome 2 and contains five exons. The recombinant protein produced using the bac ... >> More
We report characterization of a novel member of the short chain dehydrogenase/reductase superfamily. The 1513-base pair cDNA encodes a 319-amino acid protein. The corresponding gene spans over 26 kilobase pairs on chromosome 2 and contains five exons. The recombinant protein produced using the baculovirus system is localized in the microsomal fraction of Sf9 cells and is an integral membrane protein with cytosolic orientation of its catalytic domain. The enzyme exhibits an oxidoreductase activity toward hydroxysteroids with NAD(+) and NADH as the preferred cofactors. The enzyme is most efficient as a 3alpha-hydroxysteroid dehydrogenase, converting 3alpha-tetrahydroprogesterone (allopregnanolone) to dihydroprogesterone and 3alpha-androstanediol to dihydrotestosterone with similar catalytic efficiency (V(max) values of 13-14 nmol/min/mg microsomal protein and K(m) values of 5-7 microm). Despite approximately 44-47% sequence identity with retinol/3alpha-hydroxysterol dehydrogenases, the enzyme is not active toward retinols. The corresponding message is abundant in human trachea and is present at lower levels in the spinal cord, bone marrow, brain, heart, colon, testis, placenta, lung, and lymph node. Thus, the new short chain dehydrogenase represents a novel type of microsomal NAD(+)-dependent 3alpha-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. << Less
J. Biol. Chem. 276:22278-22286(2001) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Expression in E. coli and tissue distribution of the human homologue of the mouse Ke 6 gene, 17beta-hydroxysteroid dehydrogenase type 8.
Ohno S., Nishikawa K., Honda Y., Nakajin S.
Expression of the human Ke 6 gene, 17beta-hydroxysteroid dehydrogenase type 8, in E. coli and the substrate specificity of the expressed protein were examined. The tissue distribution of mRNA expression of the human Ke 6 gene was also studied using real-time PCR. Human Ke 6 gene was expressed as a ... >> More
Expression of the human Ke 6 gene, 17beta-hydroxysteroid dehydrogenase type 8, in E. coli and the substrate specificity of the expressed protein were examined. The tissue distribution of mRNA expression of the human Ke 6 gene was also studied using real-time PCR. Human Ke 6 gene was expressed as an enzymatically-active His-tag fusion protein, whose molecular weight was estimated to be 32.5 kDa by SDS-polyacrylamide gel electrophoresis. Expressed human Ke 6 gene effectively catalyzed the conversion of estradiol into estrone. Testosterone, 5alpha-dihydrotestosterone, and 5-androstene-3beta,17beta-diol were also catalyzed into the corresponding 17-ketosteroid at 2.4-5.9% that of estradiol oxidation. Furthermore, expressed enzyme catalyzed the reduction of estrone to estradiol, but the rate was a mere 2.3%. Human Ke 6 gene mRNA was expressed in the various tissues examined, such as brain, cerebellum, heart, lung, kidney, liver, small intestine, ovary, testis, adrenals, placenta, prostate, and stomach. Expression of human Ke 6 gene mRNA was especially abundant in prostate, placenta, and kidney. The levels in prostate and placenta were higher than that in kidney, where it is known to be expressed in large quantities. << Less
Mol. Cell. Biochem. 309:209-215(2008) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.