Reaction participants Show >> << Hide
-
Namehelp_outline
[amino-group carrier protein]-C-terminal-N-(1,4-dicarboxybutan-1-yl)-L-glutamine
Identifier
RHEA-COMP:9694
Reactive part
help_outline
- Name help_outline C-terminal-γ-L-glutamyl-L-2-aminoadipate group Identifier CHEBI:78503 Charge -3 Formula C11H14N2O7 SMILEShelp_outline [O-]C(=O)CCC[C@H](NC(=O)CC[C@H](N-*)C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
[amino-group carrier protein]-C-terminal-N-(1-carboxy-5-phosphooxy-5-oxopentan-1-yl)-L-glutamine
Identifier
RHEA-COMP:9712
Reactive part
help_outline
- Name help_outline C-terminal-γ-L-glutamyl-L-2-aminoadipate 6-phosphate group Identifier CHEBI:78499 Charge -4 Formula C11H14N2O10P SMILEShelp_outline [O-]C(=O)[C@H](CCC(=O)N[C@@H](CCCC(=O)OP([O-])([O-])=O)C([O-])=O)N-* 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:41944 | RHEA:41945 | RHEA:41946 | RHEA:41947 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
A prokaryotic gene cluster involved in synthesis of lysine through the amino adipate pathway: a key to the evolution of amino acid biosynthesis.
Nishida H., Nishiyama M., Kobashi N., Kosuge T., Hoshino T., Yamane H.
In previous studies we determined the nucleotide sequence of the gene cluster containing lys20, hacA (lys4A), hacB (lys4B), orfE, orfF, rimK, argC, and argB of Thermus thermophilus, an extremely thermophilic bacterium. In this study, we characterized the role of each gene in the cluster by gene di ... >> More
In previous studies we determined the nucleotide sequence of the gene cluster containing lys20, hacA (lys4A), hacB (lys4B), orfE, orfF, rimK, argC, and argB of Thermus thermophilus, an extremely thermophilic bacterium. In this study, we characterized the role of each gene in the cluster by gene disruption and examined auxotrophy in the disruptants. All disruptants except for the orfE disruption showed a lysine auxotrophic phenotype. This was surprising because this cluster consists of genes coding for unrelated proteins based on their names, which had been tentatively designated by homology analysis. Although the newly found pathway contains alpha-aminoadipic acid as a lysine biosynthetic intermediate, this pathway is not the same as the eukaryotic one. When each of the gene products was phylogenetically analyzed, we found that genes evolutionarily-related to the lysine biosynthetic genes in T. thermophilus were all present in a hyperthermophilic and anaerobic archaeon, Pyrococcus horikoshii, and formed a gene cluster in a manner similar to that in T. thermophilus. Furthermore, this gene cluster was analogous in part to the present leucine and arginine biosyntheses pathways. This lysine biosynthesis cluster is assumed to be one of the origins of lysine biosynthesis and could therefore become a key to the evolution of amino acid biosynthesis. << Less
Genome Res. 9:1175-1183(1999) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus.
Ouchi T., Tomita T., Horie A., Yoshida A., Takahashi K., Nishida H., Lassak K., Taka H., Mineki R., Fujimura T., Kosono S., Nishiyama C., Masui R., Kuramitsu S., Albers S.V., Kuzuyama T., Nishiyama M.
LysW has been identified as a carrier protein in the lysine biosynthetic pathway that is active through the conversion of α-aminoadipate (AAA) to lysine. In this study, we found that the hyperthermophilic archaeon, Sulfolobus acidocaldarius, not only biosynthesizes lysine through LysW-mediated pro ... >> More
LysW has been identified as a carrier protein in the lysine biosynthetic pathway that is active through the conversion of α-aminoadipate (AAA) to lysine. In this study, we found that the hyperthermophilic archaeon, Sulfolobus acidocaldarius, not only biosynthesizes lysine through LysW-mediated protection of AAA but also uses LysW to protect the amino group of glutamate in arginine biosynthesis. In this archaeon, after LysW modification, AAA and glutamate are converted to lysine and ornithine, respectively, by a single set of enzymes with dual functions. The crystal structure of ArgX, the enzyme responsible for modification and protection of the amino moiety of glutamate with LysW, was determined in complex with LysW. Structural comparison and enzymatic characterization using Sulfolobus LysX, Sulfolobus ArgX and Thermus LysX identify the amino acid motif responsible for substrate discrimination between AAA and glutamate. Phylogenetic analysis reveals that gene duplication events at different stages of evolution led to ArgX and LysX. << Less
Nat. Chem. Biol. 9:277-283(2013) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Discovery of proteinaceous N-modification in lysine biosynthesis of Thermus thermophilus.
Horie A., Tomita T., Saiki A., Kono H., Taka H., Mineki R., Fujimura T., Nishiyama C., Kuzuyama T., Nishiyama M.
Although the latter portion of lysine biosynthesis, the conversion of alpha-aminoadipate (AAA) to lysine, in Thermus thermophilus is similar to the latter portion of arginine biosynthesis, enzymes homologous to ArgA and ArgJ are absent from the lysine pathway. Because ArgA and ArgJ are known to mo ... >> More
Although the latter portion of lysine biosynthesis, the conversion of alpha-aminoadipate (AAA) to lysine, in Thermus thermophilus is similar to the latter portion of arginine biosynthesis, enzymes homologous to ArgA and ArgJ are absent from the lysine pathway. Because ArgA and ArgJ are known to modify the amino group of glutamate to avoid intramolecular cyclization of intermediates, their absence suggests that the pathway includes an alternative N-modification system. We reconstituted the conversion of AAA to lysine and found that the amino group of AAA is modified by attachment to the gamma-carboxyl group of the C-terminal Glu54 of a small protein, LysW; that the side chain of AAA is converted to the lysyl side chain while still attached to LysW; and that lysine is subsequently liberated from the LysW-lysine fusion. The fact that biosynthetic enzymes recognize the acidic globular domain of LysW indicates that LysW acts as a carrier protein or protein scaffold for the biosynthetic enzymes. This study thus reveals the previously unknown function of a small protein in primary metabolism. << Less
Nat. Chem. Biol. 5:673-679(2009) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.