Reaction participants Show >> << Hide
- Name help_outline 1-O-hexadecyl-2-butanoyl-sn-glycero-3-phosphocholine Identifier CHEBI:78368 Charge 0 Formula C28H58NO7P InChIKeyhelp_outline UVHUBDICYDPLIO-HHHXNRCGSA-N SMILEShelp_outline CCCCCCCCCCCCCCCCOC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-O-hexadecyl-sn-glycero-3-phosphocholine Identifier CHEBI:64496 Charge 0 Formula C24H52NO6P InChIKeyhelp_outline VLBPIWYTPAXCFJ-XMMPIXPASA-N SMILEShelp_outline CCCCCCCCCCCCCCCCOC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 19 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline butanoate Identifier CHEBI:17968 (CAS: 461-55-2) help_outline Charge -1 Formula C4H7O2 InChIKeyhelp_outline FERIUCNNQQJTOY-UHFFFAOYSA-M SMILEShelp_outline CCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:41692 | RHEA:41693 | RHEA:41694 | RHEA:41695 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Purification and characterization of platelet-activating factor acetylhydrolase II from bovine liver cytosol.
Hattori K., Hattori M., Adachi H., Tsujimoto M., Arai H., Inoue K.
Platelet-activating factor (PAF) acetylhydrolase, which inactivates PAF by removing the acetyl group at the sn-2 position, is distributed widely in plasma and tissues. In a previous study, we demonstrated that the PAF acetylhydrolase activity present in the soluble fraction of bovine brain cortex ... >> More
Platelet-activating factor (PAF) acetylhydrolase, which inactivates PAF by removing the acetyl group at the sn-2 position, is distributed widely in plasma and tissues. In a previous study, we demonstrated that the PAF acetylhydrolase activity present in the soluble fraction of bovine brain cortex could be separated chromatographically into three peaks (tentatively designated isoforms Ia, Ib, and II) (Hattori, M., Arai, H., and Inoue, K. (1993) J. Biol. Chem. 268, 18748-18753). In this study, these three isoforms were also detected in kidney and liver cytosols, although their relative activity ratios in these tissues differed. In particular, isoform II was responsible for the majority of the bovine liver PAF acetylhydrolase activity. We purified isoform II from bovine liver cytosol to near homogeneity and demonstrated that it is a single 40-kDa polypeptide. This enzyme was inactivated by diisopropyl fluorophosphate and 5,5'-dithiobis(2-nitrobenzoic acid), suggesting that both serine and cysteine residues are required for the enzyme activity, and [3H]diisopropyl fluorophosphate labeled only the 40-kDa polypeptide, confirming the enzyme's identity. Isoform II showed a comparatively broader substrate specificity than isoform Ib. Isoform II hydrolyzed propionyl and butyroyl moieties at the sn-2 position approximately half as effectively as it did PAF, whereas isoform Ib hardly hydrolyzed these substrates. Taken together with previous data, the current findings indicate that tissue cytosol contains at least two types of PAF acetylhydrolase with respect to polypeptide composition, substrate specificity, and tissue distribution and suggest that these two enzymes may share distinct physiological functions in tissues. << Less
J. Biol. Chem. 270:22308-22313(1995) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.