Reaction participants Show >> << Hide
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (Beilstein: 3664503; CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 425 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-arginyl-[ribosomal protein uL16]
Identifier
RHEA-COMP:10074
Reactive part
help_outline
- Name help_outline L-arginine residue Identifier CHEBI:29965 Charge 1 Formula C6H13N4O SMILEShelp_outline O=C(*)[C@@H](N*)CCCNC(=[NH2+])N 2D coordinates Mol file for the small molecule Search links Involved in 29 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
(3R)-3-hydroxy-L-arginyl-[ribosomal protein uL16]
Identifier
RHEA-COMP:10075
Reactive part
help_outline
- Name help_outline (3R)-3-hydroxy-L-arginine residue Identifier CHEBI:78294 Charge 1 Formula C6H13N4O2 SMILEShelp_outline NC(=[NH2+])NCC[C@@H](O)[C@H](N-*)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate Identifier CHEBI:30031 (Beilstein: 1863859; CAS: 56-14-4) help_outline Charge -2 Formula C4H4O4 InChIKeyhelp_outline KDYFGRWQOYBRFD-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:41556 | RHEA:41557 | RHEA:41558 | RHEA:41559 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Structure and functional analysis of YcfD, a novel 2-oxoglutarate/Fe-dependent oxygenase involved in translational regulation in Escherichia coli.
van Staalduinen L.M., Novakowski S.K., Jia Z.
The 2-oxoglutarate (2OG)/Fe²⁺-dependent oxygenases (2OG oxygenases) are a large family of proteins that share a similar overall three-dimensional structure and catalyze a diverse array of oxidation reactions. The Jumonji C (JmjC)-domain-containing proteins represent an important subclass of the 2O ... >> More
The 2-oxoglutarate (2OG)/Fe²⁺-dependent oxygenases (2OG oxygenases) are a large family of proteins that share a similar overall three-dimensional structure and catalyze a diverse array of oxidation reactions. The Jumonji C (JmjC)-domain-containing proteins represent an important subclass of the 2OG oxygenase family that typically catalyze protein hydroxylation; however, recently, other reactions have been identified, such as tRNA modification. The Escherichia coli gene, ycfD, was predicted to be a JmjC-domain-containing protein of unknown function based on primary sequence. Recently, YcfD was determined to act as a ribosomal oxygenase, hydroxylating an arginine residue on the 50S ribosomal protein L-16 (RL-16). We have determined the crystal structure of YcfD at 2.7 Å resolution, revealing that YcfD is structurally similar to known JmjC proteins and possesses the characteristic double-stranded β-helix fold or cupin domain. Separate from the cupin domain, an additional globular module termed α-helical arm mediates dimerization of YcfD. We further have shown that 2OG binds to YcfD using isothermal titration calorimetry and identified key binding residues using mutagenesis that, together with the iron location and structural similarity with other cupin family members, allowed identification of the active site. Structural homology to ribosomal assembly proteins combined with GST (glutathione S-transferase)-YcfD pull-down of a ribosomal protein and docking of RL-16 to the YcfD active site support the role of YcfD in regulation of bacterial ribosome assembly. Furthermore, overexpression of YcfD is shown to inhibit cell growth signifying a toxic effect on ribosome assembly. << Less
-
Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans.
Ge W., Wolf A., Feng T., Ho C.H., Sekirnik R., Zayer A., Granatino N., Cockman M.E., Loenarz C., Loik N.D., Hardy A.P., Claridge T.D., Hamed R.B., Chowdhury R., Gong L., Robinson C.V., Trudgian D.C., Jiang M., Mackeen M.M., McCullagh J.S., Gordiyenko Y., Thalhammer A., Yamamoto A., Yang M., Liu-Yi P., Zhang Z., Schmidt-Zachmann M., Kessler B.M., Ratcliffe P.J., Preston G.M., Coleman M.L., Schofield C.J.
The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylati ... >> More
The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes. << Less
Nat. Chem. Biol. 8:960-962(2012) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.