Reaction participants Show >> << Hide
- Name help_outline 1,2-diacyl-glycero-3-phosphocholine Identifier CHEBI:64482 Charge 0 Formula C10H18NO8PR2 SMILEShelp_outline C[N+](C)(C)CCOP([O-])(=O)OCC(COC([*])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 325 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an N-acylsphing-4-enine Identifier CHEBI:52639 Charge 0 Formula C19H36NO3R SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@@H](O)[C@H](CO)NC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 134 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 1,2-diacylglycerol Identifier CHEBI:49172 Charge 0 Formula C5H6O5R2 SMILEShelp_outline OCC(COC([*])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 297 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a sphingomyelin Identifier CHEBI:17636 Charge 0 Formula C24H48N2O6PR SMILEShelp_outline O=P(OCC[N+](C)(C)C)(OC[C@H](NC(*)=O)[C@@H](/C=C/CCCCCCCCCCCCC)O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 16 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:41460 | RHEA:41461 | RHEA:41462 | RHEA:41463 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Sphingomyelin synthase SMS2 displays dual activity as ceramide phosphoethanolamine synthase.
Ternes P., Brouwers J.F., van den Dikkenberg J., Holthuis J.C.
Sphingolipids are vital components of eukaryotic membranes involved in the regulation of cell growth, death, intracellular trafficking, and the barrier function of the plasma membrane (PM). While sphingomyelin (SM) is the major sphingolipid in mammals, previous studies indicate that mammalian cell ... >> More
Sphingolipids are vital components of eukaryotic membranes involved in the regulation of cell growth, death, intracellular trafficking, and the barrier function of the plasma membrane (PM). While sphingomyelin (SM) is the major sphingolipid in mammals, previous studies indicate that mammalian cells also produce the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or the enzyme(s) responsible for CPE biosynthesis. SM production is mediated by the SM synthases SMS1 in the Golgi and SMS2 at the PM, while a closely related enzyme, SMSr, has an unknown biochemical function. We now demonstrate that SMS family members display striking differences in substrate specificity, with SMS1 and SMSr being monofunctional enzymes with SM and CPE synthase activity, respectively, and SMS2 acting as a bifunctional enzyme with both SM and CPE synthase activity. In agreement with the PM residency of SMS2, we show that both SM and CPE synthase activities are enhanced at the surface of SMS2-overexpressing HeLa cells. Our findings reveal an unexpected diversity in substrate specificity among SMS family members that should enable the design of specific inhibitors to target the biological role of each enzyme individually. << Less
J. Lipid Res. 50:2270-2277(2009) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
Identification of a family of animal sphingomyelin synthases.
Huitema K., Van Den Dikkenberg J., Brouwers J.F.H.M., Holthuis J.C.
Sphingomyelin (SM) is a major component of animal plasma membranes. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, yielding diacylglycerol as a side product. This reaction is catalysed by SM synthase, an enzyme whose biological potential can be judge ... >> More
Sphingomyelin (SM) is a major component of animal plasma membranes. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, yielding diacylglycerol as a side product. This reaction is catalysed by SM synthase, an enzyme whose biological potential can be judged from the roles of diacylglycerol and ceramide as anti- and proapoptotic stimuli, respectively. SM synthesis occurs in the lumen of the Golgi as well as on the cell surface. As no gene for SM synthase has been cloned so far, it is unclear whether different enzymes are present at these locations. Using a functional cloning strategy in yeast, we identified a novel family of integral membrane proteins exhibiting all enzymatic features previously attributed to animal SM synthase. Strikingly, human, mouse and Caenorhabditis elegans genomes each contain at least two different SM synthase (SMS) genes. Whereas human SMS1 is localised to the Golgi, SMS2 resides primarily at the plasma membrane. Collectively, these findings open up important new avenues for studying sphingolipid function in animals. << Less
EMBO J. 23:33-44(2004) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.