Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline 1-O-(1Z-alkenyl)-sn-glycero-3-phosphoethanolamine Identifier CHEBI:77288 Charge 0 Formula C7H15NO6PR SMILEShelp_outline [NH3+]CCOP([O-])(=O)OC[C@H](O)CO\C=C/[*] 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine Identifier CHEBI:44811 (CAS: 74389-68-7) help_outline Charge 0 Formula C26H54NO7P InChIKeyhelp_outline HVAUUPRFYPCOCA-AREMUKBSSA-N SMILEShelp_outline CCCCCCCCCCCCCCCCOC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-O-(1Z-alkenyl)-2-acetyl-sn-glycero-3-phosphoethanolamine Identifier CHEBI:78419 Charge 0 Formula C9H17NO7PR SMILEShelp_outline CC(=O)O[C@H](CO\C=C/[*])COP([O-])(=O)OCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-O-hexadecyl-sn-glycero-3-phosphocholine Identifier CHEBI:64496 Charge 0 Formula C24H52NO6P InChIKeyhelp_outline VLBPIWYTPAXCFJ-XMMPIXPASA-N SMILEShelp_outline CCCCCCCCCCCCCCCCOC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 19 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:41396 | RHEA:41397 | RHEA:41398 | RHEA:41399 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Purification and characterization from rat kidney membranes of a novel platelet-activating factor (PAF)-dependent transacetylase that catalyzes the hydrolysis of PAF, formation of PAF analogs, and C2-ceramide.
Karasawa K., Qiu X., Lee T.-C.
We have previously identified two enzyme activities that transfer the acetyl group from platelet-activating factor (PAF) in a CoA-independent manner to lysoplasmalogen or sphingosine in HL-60 cells, endothelial cells, and a variety of rat tissues. These were termed as PAF:lysoplasmalogen (lysophos ... >> More
We have previously identified two enzyme activities that transfer the acetyl group from platelet-activating factor (PAF) in a CoA-independent manner to lysoplasmalogen or sphingosine in HL-60 cells, endothelial cells, and a variety of rat tissues. These were termed as PAF:lysoplasmalogen (lysophospholipid) transacetylase and PAF:sphingosine transacetylase, respectively. In the present study, we have solubilized and purified this PAF-dependent transacetylase 13,700-fold from rat kidney membranes (mitochondrial plus microsomal membranes) based on the PAF:lysoplasmalogen transacetylase activity. The mitochondria and microsomes were prepared and washed three times, then solubilized with 0.04% Tween 20 at a detergent/protein (w/w) ratio of 0.1. The solubilized fractions from mitochondria and microsomes were combined and subjected to sequential column chromatographies on DEAE-Sepharose, hydroxyapatite, phenyl-Sepharose, and chromatofocusing. The enzyme was further purified by native-polyacrylamide gel electrophoresis (PAGE) and affinity gel matrix in which the competitive inhibitor of the enzyme, 1-O-hexadecyl-2-N-methylcarbamyl-sn-glycero-3-phosphoethanolamine was covalently attached to the CH-Sepharose. On SDS-PAGE, the purified enzyme showed a single homogeneous band with an apparent molecular mass of 40 kDa. The purified enzyme catalyzed transacetylation of the acetyl group not only from PAF to lysoplasmalogen forming plasmalogen analogs of PAF, but also to sphingosine producing N-acetylsphingosine (C2-ceramide). In addition, this enzyme acted as a PAF-acetylhydrolase in the absence of lipid acceptor molecules. These results suggest that PAF-dependent transacetylase is an enzyme that modifies the cellular functions of PAF through generation of other diverse lipid mediators. << Less
J. Biol. Chem. 274:8655-8661(1999) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.