Enzymes
UniProtKB help_outline | 3 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline toluene Identifier CHEBI:17578 (CAS: 108-88-3) help_outline Charge 0 Formula C7H8 InChIKeyhelp_outline YXFVVABEGXRONW-UHFFFAOYSA-N SMILEShelp_outline Cc1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 4-methylphenol Identifier CHEBI:17847 (CAS: 106-44-5) help_outline Charge 0 Formula C7H8O InChIKeyhelp_outline IWDCLRJOBJJRNH-UHFFFAOYSA-N SMILEShelp_outline Cc1ccc(O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:41380 | RHEA:41381 | RHEA:41382 | RHEA:41383 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Solution structure of the toluene 4-monooxygenase effector protein (T4moD).
Hemmi H., Studts J.M., Chae Y.K., Song J., Markley J.L., Fox B.G.
Toluene 4-monooxygenase (T4MO) from Pseudomonas mendocina catalyzes the NADH- and O(2)-dependent hydroxylation of toluene to form p-cresol. The complex consists of an NADH oxidoreductase (T4moF), a Rieske ferredoxin (T4moC), a diiron hydroxylase [T4moH, with (alphabetagamma)(2) quaternary structur ... >> More
Toluene 4-monooxygenase (T4MO) from Pseudomonas mendocina catalyzes the NADH- and O(2)-dependent hydroxylation of toluene to form p-cresol. The complex consists of an NADH oxidoreductase (T4moF), a Rieske ferredoxin (T4moC), a diiron hydroxylase [T4moH, with (alphabetagamma)(2) quaternary structure], and a catalytic effector protein (T4moD). The solution structure of the 102-amino acid T4moD effector protein has been determined from 2D and 3D (1)H, (13)C, and (15)N NMR spectroscopic data. The structural model was refined through simulated annealing by molecular dynamics in torsion angle space (DYANA software) with input from 1467 experimental constraints, comprising 1259 distance constraints obtained from NOEs, 128 dihedral angle constraints from J-couplings, and 80 hydrogen bond constraints. Of 60 conformers that met the acceptance criteria, the 20 that best satisfied the input constraints were selected to represent the solution structure. With exclusion of the ill-defined N- and C-terminal segments (Ser1-Asn11 and Asp99-Met102), the atomic root-mean-square deviation for the 20 conformers with respect to the mean coordinates was 0.71 A for the backbone and 1.24 A for all non-hydrogen atoms. The secondary structure of T4moD consists of three alpha-helices and seven beta-strands arranged in an N-terminal betaalphabetabeta and a C-terminal betaalphaalphabetabetabeta domain topology. Although the published NMR structures of the methane monooxygenase effector proteins from Methylosinus trichosporium OB3b and Methylococcus capsulatus (Bath) have a similar secondary structure topology, their three-dimensional structures differ from that of T4moD. The major differences in the structures of the three effector proteins are in the relative orientations of the two beta-sheets and the interactions between the alpha-helices in the two domains. The structure of T4moD is closer to that of the methane monooxygenase effector protein from M. capsulatus (Bath) than that from M. trichosporium OB3b. The specificity of T4moD as an effector protein was investigated by replacing it in reconstituted T4MO complexes with effector proteins from monooxygenases from other bacterial species: Pseudomonas pickettii PKO1 (TbuV, toluene 3-monooxygenase); Pseudomonas species JS150 (TbmC, toluene 2-monooxygenase); and Burkeholderia cepacia G4 (S1, toluene 2-monooxygenase). The results showed that the closely related TbuV effector protein (55% sequence identity) provided partial activation of the complex, whereas the more distantly related TbmC (34% sequence identity) and S1 (29% sequence identity) did not. The (1)H NMR chemical shifts of the side-chain amide protons of Asn34, a conserved, structurally relevant amino acid, were found to be similar in spectra of effector proteins T4moD and TbuV but not in the spectrum of TbmC. This suggests that the region around Asn34 may be involved in structural aspects contributing to functional specificity. << Less
-
Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1.
Whited G.M., Gibson D.T.
Pseudomonas mendocina KR1 grows on toluene as a sole carbon and energy source. A multicomponent oxygenase was partially purified from toluene-grown cells and separated into three protein components. The reconstituted enzyme system, in the presence of NADH and Fe2+, oxidized toluene to p-cresol as ... >> More
Pseudomonas mendocina KR1 grows on toluene as a sole carbon and energy source. A multicomponent oxygenase was partially purified from toluene-grown cells and separated into three protein components. The reconstituted enzyme system, in the presence of NADH and Fe2+, oxidized toluene to p-cresol as the first detectable product. Experiments with p-deutero-toluene led to the isolation of p-cresol which retained 68% of the deuterium initially present in the parent molecule. When the reconstituted enzyme system was incubated with toluene in the presence of 18O2, the oxygen in p-cresol was shown to be derived from molecular oxygen. The results demonstrate that P. mendocina KR1 initiates degradation of toluene by a multicomponent enzyme system which has been designated toluene-4-monooxygenase. << Less
-
Crystallographic analysis of active site contributions to regiospecificity in the diiron enzyme toluene 4-monooxygenase.
Bailey L.J., Acheson J.F., McCoy J.G., Elsen N.L., Phillips G.N. Jr., Fox B.G.
Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric μ-phenoxo-bridged diiron center and a shift of diiron ligand E231 into ... >> More
Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric μ-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH(2)-benzoate and p-Br-benzoate showed a μ-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 and A107, while F196 positioned the aromatic ring against this surface via a π-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 Å) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential contribution to product release. << Less
-
Geometric and electronic structure studies of the binuclear nonheme ferrous active site of toluene-4-monooxygenase: parallels with methane monooxygenase and insight into the role of the effector proteins in O2 activation.
Schwartz J.K., Wei P.P., Mitchell K.H., Fox B.G., Solomon E.I.
Multicomponent monooxygenases, which carry out a variety of highly specific hydroxylation reactions, are of great interest as potential biocatalysts in a number of applications. These proteins share many similarities in structure and show a marked increase in O2 reactivity upon addition of an effe ... >> More
Multicomponent monooxygenases, which carry out a variety of highly specific hydroxylation reactions, are of great interest as potential biocatalysts in a number of applications. These proteins share many similarities in structure and show a marked increase in O2 reactivity upon addition of an effector component. In this study, circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field (VTVH) MCD have been used to gain spectroscopic insight into the Fe(II)Fe(II) active site in the hydroxylase component of Toluene-4 monoxygenase (T4moH) and the complex of T4moH bound by its effector protein, T4moD. These results have been correlated to spectroscopic data and density functional theory (DFT) calculations on MmoH and its interaction with MmoB. Together, these data provide further insight into the geometric and electronic structure of these biferrous active sites and, in particular, the perturbation associated with component B/D binding. It is found that binding of the effector protein changes the geometry of one iron center and orientation of its redox active orbital to accommodate the binding of O2 in a bridged structure for efficient 2-electron transfer that can form a peroxo intermediate. << Less
-
Atomic picture of ligand migration in toluene 4-monooxygenase.
Hosseini A., Brouk M., Lucas M.F., Glaser F., Fishman A., Guallar V.
Computational modeling combined with mutational and activity assays was used to underline the substrate migration pathways in toluene 4-monooxygenase, a member of the important family of bacterial multicomponent monooxygenases (BMMs). In all structurally defined BMM hydroxylases, several hydrophob ... >> More
Computational modeling combined with mutational and activity assays was used to underline the substrate migration pathways in toluene 4-monooxygenase, a member of the important family of bacterial multicomponent monooxygenases (BMMs). In all structurally defined BMM hydroxylases, several hydrophobic cavities in the α-subunit map a preserved path from the protein surface to the diiron active site. Our results confirm the presence of two pathways by which different aromatic molecules can enter/escape the active site. While the substrate is observed to enter from both channels, the more hydrophilic product is withdrawn mainly from the shorter channel ending at residues D285 and E214. The long channel ends in the vicinity of S395, whose variants have been seen to affect activity and specificity. These mutational effects are clearly reproduced and rationalized by the in silico studies. Furthermore, the combined computational and experimental results highlight the importance of residue F269, which is located at the intersection of the two channels. << Less