Reaction participants Show >> << Hide
- Name help_outline (5Z,8Z,11Z,14Z)-eicosatetraenoate Identifier CHEBI:32395 (Beilstein: 5439048) help_outline Charge -1 Formula C20H31O2 InChIKeyhelp_outline YZXBAPSDXZZRGB-DOFZRALJSA-M SMILEShelp_outline CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 83 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (12R)-hydroperoxy-(5Z,8Z,10E,14Z)-eicosatetraenoate Identifier CHEBI:75230 Charge -1 Formula C20H31O4 InChIKeyhelp_outline ZIOZYRSDNLNNNJ-ZYBDYUKJSA-M SMILEShelp_outline CCCCC\C=C/C[C@@H](OO)\C=C\C=C/C\C=C/CCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:41336 | RHEA:41337 | RHEA:41338 | RHEA:41339 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline | ||||
Reactome help_outline |
Publications
-
Sequence determinants for the reaction specificity of murine (12R)-lipoxygenase: targeted substrate modification and site-directed mutagenesis.
Meruvu S., Walther M., Ivanov I., Hammarstroem S., Fuerstenberger G., Krieg P., Reddanna P., Kuhn H.
Mammalian lipoxygenases (LOXs) are categorized with respect to their positional specificity of arachidonic acid oxygenation. Site-directed mutagenesis identified sequence determinants for the positional specificity of these enzymes, and a critical amino acid for the stereoselectivity was recently ... >> More
Mammalian lipoxygenases (LOXs) are categorized with respect to their positional specificity of arachidonic acid oxygenation. Site-directed mutagenesis identified sequence determinants for the positional specificity of these enzymes, and a critical amino acid for the stereoselectivity was recently discovered. To search for sequence determinants of murine (12R)-LOX, we carried out multiple amino acid sequence alignments and found that Phe(390), Gly(441), Ala(455), and Val(631) align with previously identified positional determinants of S-LOX isoforms. Multiple site-directed mutagenesis studies on Phe(390) and Ala(455) did not induce specific alterations in the reaction specificity, but yielded enzyme species with reduced specific activities and stereo random product patterns. Mutation of Gly(441) to Ala, which caused drastic alterations in the reaction specificity of other LOX isoforms, failed to induce major alterations in the positional specificity of mouse (12R)-LOX, but markedly modified the enantioselectivity of the enzyme. When Val(631), which aligns with the positional determinant Ile(593) of rabbit 15-LOX, was mutated to a less space-filling residue (Ala or Gly), we obtained an enzyme species with augmented catalytic activity and specifically altered reaction characteristics (major formation of chiral (11R)-hydroxyeicosatetraenoic acid methyl ester). The importance of Val(631) for the stereo control of murine (12R)-LOX was confirmed with other substrates such as methyl linoleate and 20-hydroxyeicosatetraenoic acid methyl ester. These data identify Val(631) as the major sequence determinant for the specificity of murine (12R)-LOX. Furthermore, we conclude that substrate fatty acids may adopt different catalytically productive arrangements at the active site of murine (12R)-LOX and that each of these arrangements may lead to the formation of chiral oxygenation products. << Less
J. Biol. Chem. 280:36633-36641(2005) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Human 12(R)-lipoxygenase and the mouse ortholog. Molecular cloning, expression, and gene chromosomal assignment.
Sun D., McDonnell M., Chen X.-S., Lakkis M.M., Li H., Isaacs S.N., Elsea S.H., Patel P.I., Funk C.D.
Expressed sequence tag information was used to clone the full-length sequence for a new human lipoxygenase from the B cell line CCL-156. A related mouse sequence with 83% nucleotide identity to the human sequence was also cloned. The human lipoxygenase, when expressed via the baculovirus/insect ce ... >> More
Expressed sequence tag information was used to clone the full-length sequence for a new human lipoxygenase from the B cell line CCL-156. A related mouse sequence with 83% nucleotide identity to the human sequence was also cloned. The human lipoxygenase, when expressed via the baculovirus/insect cell system produced an approximately 80-kDa protein capable of metabolizing arachidonic acid to a product identified as 12-hydroxyeicosatetraenoic acid by mass spectrometry. Using chiral phase-high performance liquid chromatography, the product was identified as >98% 12(R)-hydroxyeicosatetraenoic acid as opposed to the S-stereoisomer formed by all other known mammalian lipoxygenases. The single copy human 12(R)-lipoxygenase gene was localized to the chromosome 17p13 region, the locus where most other lipoxygenase genes are known to reside. By reverse transcription-polymerase chain reaction, but not by Northern blot, analysis the 12(R)-lipoxygenase mRNA was detected in B cells and adult skin. However, the related mouse lipoxygenase mRNA was highly expressed in epidermis of newborn mice and to a lesser extent in adult brain cortex. By in situ hybridization the mouse lipoxygenase gene was demonstrated to be temporally and spatially regulated during embryogenesis. Expression was induced at embryonic day 15.5 in epidermis, nasal epithelium, and surface of the tongue. These results broaden the mammalian lipoxygenase family to include a 12(R)-lipoxygenase whose biological function remains to be determined. << Less
J. Biol. Chem. 273:33540-33547(1998) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Lipoxygenases mediate the effect of essential fatty acid in skin barrier formation: a proposed role in releasing omega-hydroxyceramide for construction of the corneocyte lipid envelope.
Zheng Y., Yin H., Boeglin W.E., Elias P.M., Crumrine D., Beier D.R., Brash A.R.
A barrier to water loss is vital to maintaining life on dry land. Formation of the mammalian skin barrier requires both the essential fatty acid linoleate and the two lipoxygenases 12R-lipoxygenase (12R-LOX) and epidermal lipoxygenase-3 (eLOX3), although their roles are poorly understood. Linoleat ... >> More
A barrier to water loss is vital to maintaining life on dry land. Formation of the mammalian skin barrier requires both the essential fatty acid linoleate and the two lipoxygenases 12R-lipoxygenase (12R-LOX) and epidermal lipoxygenase-3 (eLOX3), although their roles are poorly understood. Linoleate occurs in O-linoleoyl-ω-hydroxyceramide, which, after hydrolysis of the linoleate moiety, is covalently attached to protein via the free ω-hydroxyl of the ceramide, forming the corneocyte lipid envelope, a scaffold between lipid and protein that helps seal the barrier. Here we show using HPLC-UV, LC-MS, GC-MS, and (1)H NMR that O-linoleoyl-ω-hydroxyceramide is oxygenated in a regio- and stereospecific fashion by the consecutive actions of 12R-LOX and eLOX3 and that these products occur naturally in pig and mouse epidermis. 12R-LOX forms 9R-hydroperoxy-linoleoyl-ω-hydroxyceramide, further converted by eLOX3 to specific epoxyalcohol (9R,10R-trans-epoxy-11E-13R-hydroxy) and 9-keto-10E,12Z esters of the ceramide; an epoxy-ketone derivative (9R,10R-trans-epoxy-11E-13-keto) is the most prominent oxidized ceramide in mouse skin. These products are absent in 12R-LOX-deficient mice, which crucially display a near total absence of protein-bound ω-hydroxyceramides and of the corneocyte lipid envelope and die shortly after birth from transepidermal water loss. We conclude that oxygenation of O-linoleoyl-ω-hydroxyceramide is required to facilitate the ester hydrolysis and allow bonding of the ω-hydroxyceramide to protein, providing a coherent explanation for the roles of multiple components in epidermal barrier function. Our study uncovers a hitherto unknown biochemical pathway in which the enzymic oxygenation of ceramides is involved in building a crucial structure of the epidermal barrier. << Less
J. Biol. Chem. 286:24046-24056(2011) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Systematic analysis of rat 12/15-lipoxygenase enzymes reveals critical role for spinal eLOX3 hepoxilin synthase activity in inflammatory hyperalgesia.
Gregus A.M., Dumlao D.S., Wei S.C., Norris P.C., Catella L.C., Meyerstein F.G., Buczynski M.W., Steinauer J.J., Fitzsimmons B.L., Yaksh T.L., Dennis E.A.
Previously, we observed significant increases in spinal 12-lipoxygenase (LOX) metabolites, in particular, hepoxilins, which contribute to peripheral inflammation-induced tactile allodynia. However, the enzymatic sources of hepoxilin synthase (HXS) activity in rats remain elusive. Therefore, we ove ... >> More
Previously, we observed significant increases in spinal 12-lipoxygenase (LOX) metabolites, in particular, hepoxilins, which contribute to peripheral inflammation-induced tactile allodynia. However, the enzymatic sources of hepoxilin synthase (HXS) activity in rats remain elusive. Therefore, we overexpressed each of the 6 rat 12/15-LOX enzymes in HEK-293T cells and measured by LC-MS/MS the formation of HXB3, 12-HETE, 8-HETE, and 15-HETE from arachidonic acid (AA) at baseline and in the presence of LOX inhibitors (NDGA, AA-861, CDC, baicalein, and PD146176) vs. vehicle-treated and mock-transfected controls. We detected the following primary intrinsic activities: 12-LOX (Alox12, Alox15), 15-LOX (Alox15b), and HXS (Alox12, Alox15). Similar to human and mouse orthologs, proteins encoded by rat Alox12b and Alox12e possessed minimal 12-LOX activity with AA as substrate, while eLOX3 (encoded by Aloxe3) exhibited HXS without 12-LOX activity when coexpressed with Alox12b or supplemented with 12-HpETE. CDC potently inhibited HXS and 12-LOX activity in vitro (relative IC50s: CDC, ~0.5 and 0.8 μM, respectively) and carrageenan-evoked tactile allodynia in vivo. Notably, peripheral inflammation significantly increased spinal eLOX3; intrathecal pretreatment with either siRNA targeting Aloxe3 or an eLOX3-selective antibody attenuated the associated allodynia. These findings implicate spinal eLOX3-mediated hepoxilin synthesis in inflammatory hyperesthesia and underscore the importance of developing more selective 12-LOX/HXS inhibitors. << Less
FASEB J. 27:1939-1949(2013) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression.
Boeglin W.E., Kim R.B., Brash A.R.
A recognized feature of psoriasis and other proliferative dermatoses is accumulation in the skin of the unusual arachidonic acid metabolite, 12R-hydroxyeicosatetraenoic acid (12R-HETE). This hydroxy fatty acid is opposite in chirality to the product of the well-known 12S-lipoxygenase and heretofor ... >> More
A recognized feature of psoriasis and other proliferative dermatoses is accumulation in the skin of the unusual arachidonic acid metabolite, 12R-hydroxyeicosatetraenoic acid (12R-HETE). This hydroxy fatty acid is opposite in chirality to the product of the well-known 12S-lipoxygenase and heretofore in mammals is known only as a product of cytochrome P450s. Here we provide mechanistic evidence for a lipoxygenase route to 12R-HETE in human psoriatic tissue and describe a 12R-lipoxygenase that can account for the biosynthesis. Initially we demonstrated retention of the C-12 deuterium of octadeuterated arachidonic acid in its conversion to 12R-HETE in incubations of psoriatic scales, indicating the end product is not formed by isomerization from 12S-H(P)ETE via the 12-keto derivative. Secondly, analysis of product formed from [10R-3H] and [10S-3H]-labeled arachidonic acids revealed that 12R-HETE synthesis is associated with stereospecific removal of the pro-R hydrogen from the 10-carbon of arachidonate. This result is compatible with 12R-lipoxygenase-catalyzed formation of 12R-HETE and not with a P450-catalyzed route to 12R-HETE in psoriatic scales. We cloned a lipoxygenase from human keratinocytes; the cDNA and deduced amino acid sequences share </=50% identity to other human lipoxygenases. This enzyme, when expressed in Hela cells, oxygenates arachidonic acid to 12-HPETE, >98% 12R in configuration. The 12R-lipoxygenase cDNA is detectable by PCR in psoriatic scales and as a 2.5-kilobase mRNA by Northern analysis of keratinocytes. Identification of this enzyme extends the known distribution of R-lipoxygenases to humans and presents an additional target for potential therapeutic interventions in psoriasis. << Less
Proc. Natl. Acad. Sci. U.S.A. 95:6744-6749(1998) [PubMed] [EuropePMC]