Reaction participants Show >> << Hide
- Name help_outline N-tetracosanoyl-sphing-4-enine Identifier CHEBI:72965 Charge 0 Formula C42H83NO3 InChIKeyhelp_outline ZJVVOYPTFQEGPH-AUTSUKAISA-N SMILEShelp_outline CCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)\C=C\CCCCCCCCCCCCC 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline tetracosanoate Identifier CHEBI:31014 Charge -1 Formula C24H47O2 InChIKeyhelp_outline QZZGJDVWLFXDLK-UHFFFAOYSA-M SMILEShelp_outline CCCCCCCCCCCCCCCCCCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sphing-4-enine Identifier CHEBI:57756 Charge 1 Formula C18H38NO2 InChIKeyhelp_outline WWUZIQQURGPMPG-KRWOKUGFSA-O SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H]([NH3+])CO 2D coordinates Mol file for the small molecule Search links Involved in 34 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:41283 | RHEA:41284 | RHEA:41285 | RHEA:41286 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Substrate specificity, membrane topology, and activity regulation of human alkaline ceramidase 2 (ACER2).
Sun W., Jin J., Xu R., Hu W., Szulc Z.M., Bielawski J., Obeid L.M., Mao C.
Human alkaline ceramidase 2 (ACER2) plays an important role in cellular responses by regulating the hydrolysis of ceramides in cells. Here we report its biochemical characterization, membrane topology, and activity regulation. Recombinant ACER2 was expressed in yeast mutant cells (Deltaypc1Deltayd ... >> More
Human alkaline ceramidase 2 (ACER2) plays an important role in cellular responses by regulating the hydrolysis of ceramides in cells. Here we report its biochemical characterization, membrane topology, and activity regulation. Recombinant ACER2 was expressed in yeast mutant cells (Deltaypc1Deltaydc1) that lack endogenous ceramidase activity, and microsomes from ACER2-expressiong yeast cells were used to biochemically characterize ACER2. ACER2 catalyzed the hydrolysis of various ceramides and followed Michaelis-Menten kinetics. ACER2 required Ca(2+) for both its in vitro and cellular activities. ACER2 has 7 putative transmembrane domains, and its amino (N) and carboxyl (C) termini were found to be oriented in the lumen of the Golgi complex and cytosol, respectively. ACER2 mutant (ACER2DeltaN36) lacking the N-terminal tail (the first 36 amino acid residues) exhibited undetectable activity and was mislocalized to the endoplasmic reticulum, suggesting that the N-terminal tail is necessary for both ACER2 activity and Golgi localization. ACER2 mutant (ACER2DeltaN13) lacking the first 13 residues was also mislocalized to the endoplasmic reticulum although it retained ceramidase activity. Overexpression of ACER2, ACER2DeltaN13, but not ACER2DeltaN36 increased the release of sphingosine 1-phosphate from cells, suggesting that its mislocalization does not affect the ability of ACER2 to regulate sphingosine 1-phosphate secretion. However, overexpression of ACER2 but not ACER2DeltaN13 or ACER2DeltaN36 inhibited the glycosylation of integrin beta1 subunit and Lamp1, suggesting that its mistargeting abolishes the ability of ACER2 to regulation protein glycosylation. These data suggest that ACER2 has broad substrate specificity and requires Ca(2+) for its activity and that ACER2 has the cytosolic C terminus and luminal N terminus, which are essential for its activity, correct cellular localization, and regulation for protein glycosylation. << Less
J. Biol. Chem. 285:8995-9007(2010) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Upregulation of the human alkaline ceramidase 1 and acid ceramidase mediates calcium-induced differentiation of epidermal keratinocytes.
Sun W., Xu R., Hu W., Jin J., Crellin H.A., Bielawski J., Szulc Z.M., Thiers B.H., Obeid L.M., Mao C.
Extracellular calcium (Ca2+(o)) potently induces the growth arrest and differentiation of human epidermal keratinocytes (HEKs). We report that Ca2+(o) markedly upregulates the human alkaline ceramidase 1 (haCER1) in HEKs; and its upregulation mediates the Ca2+(o)-induced growth arrest and differen ... >> More
Extracellular calcium (Ca2+(o)) potently induces the growth arrest and differentiation of human epidermal keratinocytes (HEKs). We report that Ca2+(o) markedly upregulates the human alkaline ceramidase 1 (haCER1) in HEKs; and its upregulation mediates the Ca2+(o)-induced growth arrest and differentiation of HEKs. haCER1 is the human ortholog of mouse alkaline ceramidase 1 that we previously identified. haCER1 catalyzed the hydrolysis of very long-chain ceramides to generate sphingosine (SPH). This in vitro activity required Ca2+. Ectopic expression of haCER1 in HEKs decreased the levels of D-e-C(24:1)-ceramide and D-e-C(24:0)-ceramide but elevated the levels of both SPH and its phosphate (S1P), whereas RNA interference-mediated knockdown of haCER1 caused the opposite effects on the levels of these sphingolipids in HEKs. Similar to haCER1 overexpression, Ca2+(o) increased the levels of SPH and S1P, and this was attenuated by haCER1 knockdown. haCER1 knockdown also inhibited the Ca2+(o)-induced growth arrest of HEKs and the Ca2+(o)-induced expression of keratin 1 and involucrin in HEKs. In addition, the acid ceramidase (AC) was also upregulated by Ca2+(o); and its knockdown attenuated the Ca2+(o)-induced expression of keratin 1 and involucrin in HEKs. These results strongly suggest that upregulation of haCER1 and AC mediates the Ca2+(o)-induced growth arrest and differentiation of HEKs by generating SPH and S1P. << Less
J. Invest. Dermatol. 128:389-397(2008) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Expression, purification, and characterization of a recombinant neutral ceramidase from Mycobacterium tuberculosis.
Okino N., Ikeda R., Ito M.
Ceramidase (CDase) catalyzes the hydrolysis of ceramide (Cer) to sphingosine (Sph) and fatty acid. We have reported the molecular cloning and preliminary characterization of the Mycobacterium CDase (MtCDase) (J. Biol. Chem., 274, 36616-36622 (1999)). To determine its function further, MtCDase was ... >> More
Ceramidase (CDase) catalyzes the hydrolysis of ceramide (Cer) to sphingosine (Sph) and fatty acid. We have reported the molecular cloning and preliminary characterization of the Mycobacterium CDase (MtCDase) (J. Biol. Chem., 274, 36616-36622 (1999)). To determine its function further, MtCDase was expressed in Escherichia coli and purified by Ni-Sepharose and gelfiltration. The purified recombinant enzyme showed a single band and a molecular weight estimated to be 71 kDa on SDS-PAGE. It had a pH optimum at 8.0-9.0 and quite broad specificity for various Cers. Of the Cers of different fatty acid moieties tested, those composed of C6-C24 fatty acids were well hydrolyzed, and Cers with mono unsaturated fatty acids were much more hydrolyzed than those with saturated fatty acids. Using N-dodecanoyl-7-nitrobenz-2-oxa-1,3-4-diazole (NBD)-D-erythro-sphingosine (C12-NBD-Cer) as substrates, the reaction followed normal Michaelis-Menten kinetics. The apparent Km and Vmax values for C12-NBD-Cer were 98.7 muM and 21.1 pmol/min respectively. The purified enzyme also catalyzed the synthesis of Cer in vitro, using NBD-labeled dodecanoic acid and Sph as substrates. << Less
Biosci. Biotechnol. Biochem. 74:316-321(2010) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.