Reaction participants Show >> << Hide
- Name help_outline 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphocholine Identifier CHEBI:52450 (Beilstein: 5364572; CAS: 74389-69-8) help_outline Charge 0 Formula C28H58NO7P InChIKeyhelp_outline ZXCIEWBDUAPBJF-MUUNZHRXSA-N SMILEShelp_outline P(OC[C@@H](COCCCCCCCCCCCCCCCCCC)OC(C)=O)(=O)(OCC[N+](C)(C)C)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-O-octadecyl-sn-glycero-3-phosphocholine Identifier CHEBI:75216 Charge 0 Formula C26H56NO6P InChIKeyhelp_outline XKBJVQHMEXMFDZ-AREMUKBSSA-N SMILEShelp_outline [C@@H](COCCCCCCCCCCCCCCCCCC)(COP(OCC[N+](C)(C)C)(=O)[O-])O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetate Identifier CHEBI:30089 (CAS: 71-50-1) help_outline Charge -1 Formula C2H3O2 InChIKeyhelp_outline QTBSBXVTEAMEQO-UHFFFAOYSA-M SMILEShelp_outline CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 180 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:41183 | RHEA:41184 | RHEA:41185 | RHEA:41186 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Membrane-bound plasma platelet activating factor acetylhydrolase acts on substrate in the aqueous phase.
Min J.H., Jain M.K., Wilder C., Paul L., Apitz-Castro R., Aspleaf D.C., Gelb M.H.
Human plasma platelet activating factor acetylhydrolase (pPAF-AH) is a phospholipase A(2) that specifically hydrolyzes the sn-2 ester of platelet activating factor (PAF) and of phospholipids with oxidatively truncated sn-2 fatty acyl chains. pPAF-AH is bound to lipoproteins in vivo, and it binds e ... >> More
Human plasma platelet activating factor acetylhydrolase (pPAF-AH) is a phospholipase A(2) that specifically hydrolyzes the sn-2 ester of platelet activating factor (PAF) and of phospholipids with oxidatively truncated sn-2 fatty acyl chains. pPAF-AH is bound to lipoproteins in vivo, and it binds essentially irreversibly to anionic and zwitterionic phospholipid vesicles in vitro and hydrolyzes PAF and PAF analogues. Substrate hydrolysis also occurs in the absence of vesicles, with a maximum rate reached at the critical micelle concentration. A novel pre-steady-state kinetic analysis with enzyme tightly bound to vesicles and with a substrate that undergoes slow intervesicle exchange establishes that pPAF-AH accesses its substrate from the aqueous phase and thus is not an interfacial enzyme. Such a mechanism readily explains why this enzyme displays dramatic specificity for phospholipids with short sn-2 chains or with medium-length, oxidatively truncated sn-2 chains since a common feature of these lipids is their relatively high water solubility. It also explains why the enzymatic rate drops as the length of the sn-1 chain is increased. pPAF-AH shows broad specificity toward phospholipids with different polar headgroups. Additional results are that PAF undergoes intervesicle exchange on the subminute time scale and it does not undergo transbilayer movement over tens of minutes. << Less
Biochemistry 38:12935-12942(1999) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.