Reaction participants Show >> << Hide
- Name help_outline 1-hexadecanoyl-sn-glycero-3-phosphocholine Identifier CHEBI:72998 (CAS: 14863-27-5) help_outline Charge 0 Formula C24H50NO7P InChIKeyhelp_outline ASWBNKHCZGQVJV-HSZRJFAPSA-N SMILEShelp_outline [C@@H](COC(=O)CCCCCCCCCCCCCCC)(COP(OCC[N+](C)(C)C)(=O)[O-])O 2D coordinates Mol file for the small molecule Search links Involved in 77 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Identifier CHEBI:72999 (CAS: 63-89-8,2644-64-6) help_outline Charge 0 Formula C40H80NO8P InChIKeyhelp_outline KILNVBDSWZSGLL-KXQOOQHDSA-N SMILEShelp_outline CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC 2D coordinates Mol file for the small molecule Search links Involved in 23 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sn-glycerol 3-phosphocholine Identifier CHEBI:16870 (Beilstein: 6062450; CAS: 28319-77-9) help_outline Charge 0 Formula C8H20NO6P InChIKeyhelp_outline SUHOQUVVVLNYQR-MRVPVSSYSA-N SMILEShelp_outline C[N+](C)(C)CCOP([O-])(=O)OC[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 42 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:40879 | RHEA:40880 | RHEA:40881 | RHEA:40882 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
The PLB2 gene of Saccharomyces cerevisiae confers resistance to lysophosphatidylcholine and encodes a phospholipase B/lysophospholipase.
Fyrst H., Oskouian B., Kuypers F.A., Saba J.D.
The PLB1 gene of Saccharomyces cerevisiae encodes a protein that demonstrates phospholipase B, lysophospholipase, and transacylase activities. Several genes with significant homology to PLB1 exist in the S. cerevisiae genome, raising the possibility that other proteins may contribute to the total ... >> More
The PLB1 gene of Saccharomyces cerevisiae encodes a protein that demonstrates phospholipase B, lysophospholipase, and transacylase activities. Several genes with significant homology to PLB1 exist in the S. cerevisiae genome, raising the possibility that other proteins may contribute to the total phospholipase B/lysophospholipase/transacylase activities of the cell. We report the isolation of a previously uncharacterized gene that is highly homologous to PLB1 and that, when overexpressed, confers resistance to 1-palmitoyllysophosphatidylcholine. This gene, which is located adjacent to the PLB1 gene on the left arm of chromosome XIII and which we refer to as PLB2, encodes a phospholipase B/lysophospholipase. Unlike PLB1, this gene product does not contain significant transacylase activity. The PLB2 gene product shows lysophospholipase activity toward lysophosphatidylcholine, lysophosphatidylserine, and lysophosphatidylethanolamine. Whereas deletion of either PLB1 or PLB2 resulted in the loss of 80% of cellular lysophospholipase activity, a plb1/plb2 double deletion mutant is completely devoid of lysophospholipase activity toward the preferred substrate lysophosphatidylcholine. Overexpression of PLB2 was associated with an increase in total cellular phospholipase B/lysophospholipase activity, as well as the appearance of significant lysophospholipase activity in the medium. Moreover, overexpression of PLB2 was associated with saturation at a higher cell density, and an increase in total cellular phospholipid content, but no change in phospholipid composition or fatty acid incorporation into cellular lipids. Deletion of PLB2 was not lethal and did not result in alteration of membrane phospholipid composition or content. PLB2 gene expression was found to be maximal during exponential growth conditions and was decreased in late phase, in a manner similar to other genes involved in phospholipid metabolism. << Less
Biochemistry 38:5864-5871(1999) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Purification, characterization, and inhibition by phosphatidic acid of lysophospholipase transacylase from rat liver.
Sugimoto H., Yamashita S.
Lysophospholipase transacylase was purified 214,360-fold to homogeneity from the rat liver 100,000 x g supernatant. After DEAE chromatography, total activity increased 12.9-fold, due to the removal of endogenous inhibitors. The inhibitors were isolated and identified as phosphatidic acid and fatty ... >> More
Lysophospholipase transacylase was purified 214,360-fold to homogeneity from the rat liver 100,000 x g supernatant. After DEAE chromatography, total activity increased 12.9-fold, due to the removal of endogenous inhibitors. The inhibitors were isolated and identified as phosphatidic acid and fatty acid. The final preparation showed a single band on SDS-polyacrylamide electrophoresis with an M(r) of 60,000. Gel filtration through Sephacryl S-200 gave a similar value, suggesting that the enzyme exists as a monomer. Activity was highest at pH 6.0 and was not affected by Ca2+, Mg2+, and EDTA. The enzyme produced glycerophosphocholine (GPC), palmitic acid, and dipalmitoyl-GPC on incubation with 1-palmitoyl-GPC, indicating that the enzyme catalyzed both deacylation and transacylation. The relative rates of deacylation and transacylation were 1:0.3 under standard assay conditions. Km for 1-palmitoyl-GPC and Vmax of hydrolase activity were 91 microM and 12.9 mumol/min/mg, respectively. The enzyme was selective for choline lysophospholipid. Ethanolamine, inositol, and serine lysophospholipids were not good substrates of the enzyme. Phosphatidic acid was a potent, competitive inhibitor of the enzyme with Ki of about 10 microM as determined with 1-stearoyl-2-arachidonoyl glycerophosphate. Although less potent, lysophosphatidic acid, palmitoyl-L-carnitine, and fatty acid were also inhibitory to the enzyme. << Less
J. Biol. Chem. 269:6252-6258(1994) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Characterization of the transacylase activity of rat liver 60-kDa lysophospholipase-transacylase. Acyl transfer from the sn-2 to the sn-1 position.
Sugimoto H., Yamashita S.
Rat liver 60-kDa lysophospholipase-transacylase catalyzes not only the hydrolysis of 1-acyl-sn-glycero-3-phosphocholine, but also the transfer of its acyl chain to a second molecule of 1-acyl-sn-glycero-3-phosphocholine to form phosphatidylcholine (H. Sugimoto, S. Yamashita, J. Biol. Chem. 269 (19 ... >> More
Rat liver 60-kDa lysophospholipase-transacylase catalyzes not only the hydrolysis of 1-acyl-sn-glycero-3-phosphocholine, but also the transfer of its acyl chain to a second molecule of 1-acyl-sn-glycero-3-phosphocholine to form phosphatidylcholine (H. Sugimoto, S. Yamashita, J. Biol. Chem. 269 (1994) 6252-6258). Here we report the detailed characterization of the transacylase activity of the enzyme. The enzyme mediated three types of acyl transfer between donor and acceptor lipids, transferring acyl residues from: (1) the sn-1 to -1(3); (2) sn-1 to -2; and (3) sn-2 to -1 positions. In the sn-1 to -1(3) transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1(3) positions of glycerol and 2-acyl-sn-glycerol, producing 1(3)-acyl-sn-glycerol and 1,2-diacyl-sn-glycerol, respectively. In the sn-1 to -2 transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to not only the sn-2 positions of 1-acyl-sn-glycero-3-phosphocholine, but also 1-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. 1-Acyl-sn-glycero-3-phospho-myo-inositol and 1-acyl-sn-glycero-3-phosphoserine were much less effectively transacylated by the enzyme. In the sn-2 to -1 transfer, the sn-2 acyl residue of 2-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1 position of 2-acyl-sn-glycero-3-phosphocholine and 2-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. Consistently, the enzyme hydrolyzed the sn-2 acyl residue from 2-acyl-sn-glycero-3-phosphocholine. By the sn-2 to -1 transfer activity, arachidonic acid was transferred from the sn-2 position of donor lipids to the sn-1 position of acceptor lipids, thus producing 1-arachidonoyl phosphatidylcholine. When 2-arachidonoyl-sn-glycero-3-phosphocholine was used as the sole substrate, diarachidonoyl phosphatidylcholine was synthesized at a rate of 0.23 micromol/min/mg protein. Thus, 60-kDa lysophospholipase-transacylase may play a role in the synthesis of 1-arachidonoyl phosphatidylcholine needed for important cell functions, such as anandamide synthesis. << Less
Biochim. Biophys. Acta 1438:264-272(1999) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
Subcellular localization and lysophospholipase/transacylation activities of human group IVC phospholipase A2 (cPLA2gamma).
Yamashita A., Tanaka K., Kamata R., Kumazawa T., Suzuki N., Koga H., Waku K., Sugiura T.
cPLA2gamma was identified as an ortholog of cPLA2alpha, which is a key enzyme in eicosanoid production. cPLA2gamma was reported to be located in endoplasmic reticulum (ER) and mitochondria and to have lysophospholipase activity beside phospholipase A2 (PLA2) activity. However, subcellular localiza ... >> More
cPLA2gamma was identified as an ortholog of cPLA2alpha, which is a key enzyme in eicosanoid production. cPLA2gamma was reported to be located in endoplasmic reticulum (ER) and mitochondria and to have lysophospholipase activity beside phospholipase A2 (PLA2) activity. However, subcellular localization, mechanism of membrane binding, regulation and physiological function have not been fully established. In the present study, we examined the subcellular localization and enzymatic properties of cPLA2gamma with C-terminal FLAG-tag. We found that cPLA2gamma was located not only in ER but also mitochondria even in the absence of the prenylation. Purified recombinant cPLA2gamma catalyzed an acyltransferase reaction from one molecule of lysophosphatidylcholine (LPC) to another, forming phosphatidylcholine (PC). LPC or lysophosphatidylethanolamine acted as acyl donor and acceptor, but lysophosphatidylserine, lysophosphatidylinositol and lysophosphatidic acid (LPA) did not. PC and phosphatidylethanolamine (PE) also acted as weak acyl donors. Reaction conditions changed the balance of lysophospholipase and transacylation activities, with addition of LPA/PA, pH>8, and elevated temperature markedly increasing transacylation activity; this suggests that lysophospholipase/transacylation activities of cPLA2gamma may be regulated by various factors. As lysophospholipids are known to accumulate in ischemia heart and to induce arryhthmia, the cPLA2gamma that is abundant in heart may have a protective role through clearance of lysophospholipids by its transacylation activity. << Less
Biochim. Biophys. Acta 1791:1011-1022(2009) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.