Reaction participants Show >> << Hide
- Name help_outline 1-hexadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycerol Identifier CHEBI:77096 Charge 0 Formula C39H68O5 InChIKeyhelp_outline YJEMDFYSDGNQNM-NDUZERMISA-N SMILEShelp_outline CCCCCCCCCCCCCCCC(=O)OC[C@H](CO)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-hexadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphate Identifier CHEBI:72864 Charge -2 Formula C39H67O8P InChIKeyhelp_outline SPYWWYSOADUXOQ-YABMZCMSSA-L SMILEShelp_outline CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])([O-])=O)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:40335 | RHEA:40336 | RHEA:40337 | RHEA:40338 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Diacylglycerol kinase epsilon is selective for both acyl chains of phosphatidic acid or diacylglycerol.
Lung M., Shulga Y.V., Ivanova P.T., Myers D.S., Milne S.B., Brown H.A., Topham M.K., Epand R.M.
The phosphatidylinositol (PI) cycle mediates many cellular events by controlling the metabolism of many lipid second messengers. Diacylglycerol kinase epsilon (DGK epsilon) has an important role in this cycle. DGK epsilon is the only DGK isoform to show inhibition by its product phosphatidic acid ... >> More
The phosphatidylinositol (PI) cycle mediates many cellular events by controlling the metabolism of many lipid second messengers. Diacylglycerol kinase epsilon (DGK epsilon) has an important role in this cycle. DGK epsilon is the only DGK isoform to show inhibition by its product phosphatidic acid (PA) as well as substrate specificity for sn-2 arachidonoyl-diacylglycerol (DAG). Here, we show that this inhibition and substrate specificity are both determined by selectivity for a combination of the sn-1 and sn-2 acyl chains of PA or DAG, respectively, preferring the most prevalent acyl chain composition of lipids involved specifically in the PI cycle, 1-stearoyl-2-arachidonoyl. Although the difference in rate for closely related lipid species is small, there is a significant enrichment of 1-stearoyl-2-arachidonoyl PI because of the cyclical nature of PI turnover. We also show that the inhibition of DGK epsilon by PA is competitive and that the deletion of the hydrophobic segment and cationic cluster of DGK epsilon does not affect its selectivity for the acyl chains of PA or DAG. Thus, this active site not only recognizes the lipid headgroup but also a combination of the two acyl chains in PA or DAG. We propose a mechanism of DGK epsilon regulation where its dual acyl chain selectivity is used to negatively regulate its enzymatic activity in a manner that ensures DGK epsilon remains committed to the PI turnover cycle. This novel mechanism of enzyme regulation within a signaling pathway could serve as a template for the regulation of enzymes in other pathways in the cell. << Less
J. Biol. Chem. 284:31062-31073(2009) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.