Reaction participants Show >> << Hide
- Name help_outline coenzyme B Identifier CHEBI:58596 Charge -3 Formula C11H19NO7PS InChIKeyhelp_outline JBJSVEVEEGOEBZ-SCZZXKLOSA-K SMILEShelp_outline C[C@@H](OP([O-])([O-])=O)[C@H](NC(=O)CCCCCCS)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline coenzyme M Identifier CHEBI:58319 Charge -1 Formula C2H5O3S2 InChIKeyhelp_outline ZNEWHQLOPFWXOF-UHFFFAOYSA-M SMILEShelp_outline [O-]S(=O)(=O)CCS 2D coordinates Mol file for the small molecule Search links Involved in 19 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline fumarate Identifier CHEBI:29806 (Beilstein: 1861276; CAS: 142-42-7) help_outline Charge -2 Formula C4H2O4 InChIKeyhelp_outline VZCYOOQTPOCHFL-OWOJBTEDSA-L SMILEShelp_outline [O-]C(=O)\C=C\C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline coenzyme M-coenzyme B heterodisulfide Identifier CHEBI:58411 Charge -4 Formula C13H22NO10PS3 InChIKeyhelp_outline OBGQLHXSMIBYLN-PWSUYJOCSA-J SMILEShelp_outline C[C@@H](OP([O-])([O-])=O)[C@H](NC(=O)CCCCCCSSCCS([O-])(=O)=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate Identifier CHEBI:30031 (Beilstein: 1863859; CAS: 56-14-4) help_outline Charge -2 Formula C4H4O4 InChIKeyhelp_outline KDYFGRWQOYBRFD-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:40235 | RHEA:40236 | RHEA:40237 | RHEA:40238 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Purification and characterization of an anabolic fumarate reductase from Methanobacterium thermoautotrophicum.
Khandekar S.S., Eirich L.D.
An oxygen-sensitive fumarate reductase has been purified from the cytosol fraction of the cells of the archaebacterium Methanobacterium thermoautotrophicum. A major portion of the purification was performed inside an anaerobic chamber, employing reducing agents to maintain low redox potentials. Th ... >> More
An oxygen-sensitive fumarate reductase has been purified from the cytosol fraction of the cells of the archaebacterium Methanobacterium thermoautotrophicum. A major portion of the purification was performed inside an anaerobic chamber, employing reducing agents to maintain low redox potentials. The apparent molecular weight of the native enzyme is 78,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a minimal subunit molecular weight of about 20,000. Iodoacetamide (1 mM) and copper chloride (5 mM) caused significant loss in the enzyme activity. The optimum temperature for the enzymatic activity was 75 degrees C. The pH optimum was found to be 7.0. The fumarate reductase had an apparent Km of 0.20 mM for fumarate. Purified enzyme was colorless; spectroscopic studies indicated the absence of flavins as a cofactor. The spectral data, however, suggested the presence of an unknown cofactor tightly bound to the enzyme. Fumarate reductase is involved in the anabolic rather than the catabolic metabolism of M. thermoautotrophicum. << Less
Appl. Environ. Microbiol. 55:856-861(1989) [PubMed] [EuropePMC]
-
Thiol:fumarate reductase (Tfr) from Methanobacterium thermoautotrophicum--identification of the catalytic sites for fumarate reduction and thiol oxidation.
Heim S., Kunkel A., Thauer R.K., Hedderich R.
Most methanogenic Archaea contain an unusual cytoplasmic fumarate reductase which catalyzes the reduction of fumarate with coenzyme M (CoM-S-H) and coenzyme B (CoB-S-H) as electron donors forming succinate and CoM-S-S-CoB as products. We report here on the purification and characterization of this ... >> More
Most methanogenic Archaea contain an unusual cytoplasmic fumarate reductase which catalyzes the reduction of fumarate with coenzyme M (CoM-S-H) and coenzyme B (CoB-S-H) as electron donors forming succinate and CoM-S-S-CoB as products. We report here on the purification and characterization of this thiol:fumarate reductase (Tfr) from Methanobacterium thermoautotrophicum (strain Marburg). The purified enzyme, which was composed of two different subunits with apparent molecular masses of 58 kDa (TfrA) and 50 kDa (TfrB), was found to catalyze the following reactions: (a) the reduction of fumarate with CoM-S-H and CoB-S-H (150 U/mg); (b) the reduction of fumarate with reduced benzyl viologen (620 U/mg); (c) the oxidation of CoM-S-H and CoB-S-H to CoM-S-S-CoB with methylene blue (95 U/mg); and (d) the reduction of CoM-S-S-CoB with reduced benzyl viologen (250 U/mg). The flavoprotein contained 12 mol non-heme iron and approximately the same amount of acid-labile sulfur/mol heterodimer. The genes encoding TfrA and TfrB were cloned and sequenced. Sequence comparisons with fumarate reductases and succinate dehydrogenases from Bacteria and Eucarya and with heterodisulfide reductases from M. thermoautotrophicum and Methanosarcina barkeri revealed that TfrA harbors FAD-binding motifs and the catalytic site for fumarate reduction and that TfrB harbors one [2Fe-2S] cluster and two [4Fe-4S] clusters and the catalytic site for CoM-S-H and CoB-S-H oxidation. << Less