Reaction participants Show >> << Hide
- Name help_outline hexadecanoate Identifier CHEBI:7896 (CAS: 143-20-4) help_outline Charge -1 Formula C16H31O2 InChIKeyhelp_outline IPCSVZSSVZVIGE-UHFFFAOYSA-M SMILEShelp_outline CCCCCCCCCCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 92 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11964
Reactive part
help_outline
- Name help_outline FMNH2 Identifier CHEBI:57618 (Beilstein: 6258176) help_outline Charge -2 Formula C17H21N4O9P InChIKeyhelp_outline YTNIXZGTHTVJBW-SCRDCRAPSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 810 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 16-hydroxyhexadecanoate Identifier CHEBI:55329 Charge -1 Formula C16H31O3 InChIKeyhelp_outline UGAGPNKCDRTDHP-UHFFFAOYSA-M SMILEShelp_outline C(CCCCCCCCCCO)CCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11965
Reactive part
help_outline
- Name help_outline FMN Identifier CHEBI:58210 Charge -3 Formula C17H18N4O9P InChIKeyhelp_outline ANKZYBDXHMZBDK-SCRDCRAPSA-K SMILEShelp_outline C12=NC([N-]C(C1=NC=3C(N2C[C@@H]([C@@H]([C@@H](COP(=O)([O-])[O-])O)O)O)=CC(=C(C3)C)C)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 820 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:40199 | RHEA:40200 | RHEA:40201 | RHEA:40202 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis.
Dobritsa A.A., Shrestha J., Morant M., Pinot F., Matsuno M., Swanson R., Moller B.L., Preuss D.
Sporopollenin is the major component of the outer pollen wall (exine). Fatty acid derivatives and phenolics are thought to be its monomeric building blocks, but the precise structure, biosynthetic route, and genetics of sporopollenin are poorly understood. Based on a phenotypic mutant screen in Ar ... >> More
Sporopollenin is the major component of the outer pollen wall (exine). Fatty acid derivatives and phenolics are thought to be its monomeric building blocks, but the precise structure, biosynthetic route, and genetics of sporopollenin are poorly understood. Based on a phenotypic mutant screen in Arabidopsis (Arabidopsis thaliana), we identified a cytochrome P450, designated CYP704B1, as being essential for exine development. CYP704B1 is expressed in the developing anthers. Mutations in CYP704B1 result in impaired pollen walls that lack a normal exine layer and exhibit a characteristic striped surface, termed zebra phenotype. Heterologous expression of CYP704B1 in yeast cells demonstrated that it catalyzes omega-hydroxylation of long-chain fatty acids, implicating these molecules in sporopollenin synthesis. Recently, an anther-specific cytochrome P450, denoted CYP703A2, that catalyzes in-chain hydroxylation of lauric acid was also shown to be involved in sporopollenin synthesis. This shows that different classes of hydroxylated fatty acids serve as essential compounds for sporopollenin formation. The genetic relationships between CYP704B1, CYP703A2, and another exine gene, MALE STERILITY2, which encodes a fatty acyl reductase, were explored. Mutations in all three genes resulted in pollen with remarkably similar zebra phenotypes, distinct from those of other known exine mutants. The double and triple mutant combinations did not result in the appearance of novel phenotypes or enhancement of single mutant phenotypes. This implies that each of the three genes is required to provide an indispensable subset of fatty acid-derived components within the sporopollenin biosynthesis framework. << Less
Plant Physiol. 151:574-589(2009) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Expression and characterization of CYP52 genes involved in the biosynthesis of sophorolipid and alkane metabolism from Starmerella bombicola.
Huang F.C., Peter A., Schwab W.
Three cytochrome P450 monooxygenase CYP52 gene family members were isolated from the sophorolipid-producing yeast Starmerella bombicola (former Candida bombicola), namely, CYP52E3, CYP52M1, and CYP52N1, and their open reading frames were cloned into the pYES2 vector for expression in Saccharomyces ... >> More
Three cytochrome P450 monooxygenase CYP52 gene family members were isolated from the sophorolipid-producing yeast Starmerella bombicola (former Candida bombicola), namely, CYP52E3, CYP52M1, and CYP52N1, and their open reading frames were cloned into the pYES2 vector for expression in Saccharomyces cerevisiae. The functions of the recombinant proteins were analyzed with a variety of alkane and fatty acid substrates using microsome proteins or a whole-cell system. CYP52M1 was found to oxidize C16 to C20 fatty acids preferentially. It converted oleic acid (C18:1) more efficiently than stearic acid (C18:0) and linoleic acid (C18:2) and much more effectively than α-linolenic acid (C18:3). No products were detected when C10 to C12 fatty acids were used as the substrates. Moreover, CYP52M1 hydroxylated fatty acids at their ω- and ω-1 positions. CYP52N1 oxidized C14 to C20 saturated and unsaturated fatty acids and preferentially oxidized palmitic acid, oleic acid, and linoleic acid. It only catalyzed ω-hydroxylation of fatty acids. Minor ω-hydroxylation activity against myristic acid, palmitic acid, palmitoleic acid, and oleic acid was shown for CYP52E3. Furthermore, the three P450s were coassayed with glucosyltransferase UGTA1. UGTA1 glycosylated all hydroxyl fatty acids generated by CYP52E3, CYP52M1, and CYP52N1. The transformation efficiency of fatty acids into glucolipids by CYP52M1/UGTA1 was much higher than those by CYP52N1/UGTA1 and CYP52E3/UGTA1. Taken together, CYP52M1 is demonstrated to be involved in the biosynthesis of sophorolipid, whereas CYP52E3 and CYP52N1 might be involved in alkane metabolism in S. bombicola but downstream of the initial oxidation steps. << Less
Appl. Environ. Microbiol. 80:766-776(2014) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
Requirement for omega and (omega;-1)-hydroxylations of fatty acids by human cytochromes P450 2E1 and 4A11.
Adas F., Salauen J.P., Berthou F., Picart D., Simon B., Amet Y.
Human liver microsomes and recombinant human P450 have been used as enzyme source in order to better understand the requirement for the optimal rate of omega and (omega;-1)-hydroxylations of fatty acids by cytochromes P450 2E1 and 4A. Three parameters were studied: alkyl chain length, presence and ... >> More
Human liver microsomes and recombinant human P450 have been used as enzyme source in order to better understand the requirement for the optimal rate of omega and (omega;-1)-hydroxylations of fatty acids by cytochromes P450 2E1 and 4A. Three parameters were studied: alkyl chain length, presence and configuration of double bond(s) in the alkyl chain, and involvement of carboxylic function in the fatty acid binding inside the access channel of P450 active site. The total rate of metabolite formation decreased when increasing the alkyl chain length of saturated fatty acids (from C12 to C16), while no hydroxylated metabolite was detected when liver microsomes were incubated with stearic acid. However, unsaturated fatty acids, such as oleic, elaidic and linoleic acids, were omega and (omega;-1)-hydroxylated with an efficiency at least similar to palmitic acid. The (omega;-1)/omega ratio decreased from 2.8 to 1 with lauric, myristic and palmitic acids as substrates, while the reverse was observed for unsaturated C18 fatty acids which are mainly omega-hydroxylated, except for elaidic acid showing a metabolic profile quite similar to those of saturated fatty acids. The double bond configuration did not significantly modify the ability of hydroxylation of fatty acid, while the negatively charged carboxylic group allowed a configuration energetically favourable for omega and (omega;-1)-hydroxylation inside the access channel of active site. << Less
J. Lipid Res. 40:1990-1997(1999) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis.
Johnston J.B., Kells P.M., Podust L.M., Ortiz de Montellano P.R.
Mycobacterium tuberculosis (Mtb) produces a variety of methyl-branched lipids that serve important functions, including modulating the immune response during pathogenesis and contributing to a robust cell wall that is impermeable to many chemical agents. Here, we report characterization of Mtb CYP ... >> More
Mycobacterium tuberculosis (Mtb) produces a variety of methyl-branched lipids that serve important functions, including modulating the immune response during pathogenesis and contributing to a robust cell wall that is impermeable to many chemical agents. Here, we report characterization of Mtb CYP124 (Rv2266) that includes demonstration of preferential oxidation of methyl-branched lipids. Spectrophotometric titrations and analysis of reaction products indicate that CYP124 tightly binds and hydroxylates these substrates at the chemically disfavored omega-position. We also report X-ray crystal structures of the ligand-free and phytanic acid-bound protein at a resolution of 1.5 A and 2.1 A, respectively, which provide structural insights into a cytochrome P450 with predominant omega-hydroxylase activity. The structures of ligand-free and substrate-bound CYP124 reveal several differences induced by substrate binding, including reorganization of the I helix and closure of the active site by elements of the F, G, and D helices that bind the substrate and exclude solvent from the hydrophobic active site cavity. The observed regiospecific catalytic activity suggests roles of CYP124 in the physiological oxidation of relevant Mtb methyl-branched lipids. The enzymatic specificity and structures reported here provide a scaffold for the design and testing of specific inhibitors of CYP124. << Less
Proc. Natl. Acad. Sci. U.S.A. 106:20687-20692(2009) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Expression and characterization of CYP4V2 as a fatty acid omega-hydroxylase.
Nakano M., Kelly E.J., Rettie A.E.
Bietti's crystalline dystrophy is an ocular disease that is strongly associated with polymorphisms in the CYP4V2 gene. CYP4 enzymes are typically microsomal fatty acid omega-hydroxylases that function together with mitochondrial and peroxisomal beta-oxidation enzymes to degrade cellular lipids. In ... >> More
Bietti's crystalline dystrophy is an ocular disease that is strongly associated with polymorphisms in the CYP4V2 gene. CYP4 enzymes are typically microsomal fatty acid omega-hydroxylases that function together with mitochondrial and peroxisomal beta-oxidation enzymes to degrade cellular lipids. Indeed, ocular and peripheral cells cultured from patients with Bietti's have been reported to exhibit abnormal lipid metabolism. However, CYP4V2 possesses low sequence homology to other members of the CYP4 family. Therefore, we cloned and expressed CYP4V2 and analyzed the functional characteristics of this new cytochrome P450 enzyme. We find that CYP4V2 is a selective omega-hydroxylase of saturated, medium-chain fatty acids with relatively high catalytic efficiency toward myristic acid. Moreover, N-hydroxy-N'-(4-n-butyl-2-methylphenyl formamidine) (HET0016) is a nanomolar inhibitor of the enzyme. Therefore, CYP4V2 exhibits catalytic functions typical of a human CYP4 enzyme, but with a distinctive chain-length selectivity coupled with high omega-hydroxylase specificity. Consequently, defective omega-oxidation of ocular fatty acids/lipids secondary to mutations in the CYP4V2 gene appears to be a plausible mechanism underlying Bietti's crystalline dystrophy. << Less
Drug Metab. Dispos. 37:2119-2122(2009) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Posttranslational Modification of Human Cytochrome CYP4F11 by 4-Hydroxynonenal Impairs omega-Hydroxylation in Malaria Pigment Hemozoin-Fed Monocytes: The Role in Malaria Immunosuppression.
Skorokhod O., Triglione V., Barrera V., Di Nardo G., Valente E., Ulliers D., Schwarzer E., Gilardi G.
Malaria is a frequent parasitic infection becomes life threatening due to the disequilibrated immune responses of the host. Avid phagocytosis of malarial pigment hemozoin (HZ) and HZ-containing Plasmodium parasites incapacitates monocyte functions by bioactive lipoperoxidation products 4-hydroxyno ... >> More
Malaria is a frequent parasitic infection becomes life threatening due to the disequilibrated immune responses of the host. Avid phagocytosis of malarial pigment hemozoin (HZ) and HZ-containing Plasmodium parasites incapacitates monocyte functions by bioactive lipoperoxidation products 4-hydroxynonenal (4-HNE) and hydroxyeicosatetraenoic acids (HETEs). CYP4F conjugation with 4-HNE is hypothesised to inhibit ω-hydroxylation of 15-HETE, leading to sustained monocyte dysfunction caused by 15-HETE accumulation. A combined immunochemical and mass-spectrometric approach identified 4-HNE-conjugated CYP4F11 in primary human HZ-laden and 4-HNE-treated monocytes. Six distinct 4-HNE-modified amino acid residues were revealed, of which C260 and H261 are localized in the substrate recognition site of CYP4F11. Functional consequences of enzyme modification were investigated on purified human CYP4F11. Palmitic acid, arachidonic acid, 12-HETE, and 15-HETE bound to unconjugated CYP4F11 with apparent dissociation constants of 52, 98, 38, and 73 µM, respectively, while in vitro conjugation with 4-HNE completely blocked substrate binding and enzymatic activity of CYP4F11. Gas chromatographic product profiles confirmed that unmodified CYP4F11 catalysed the ω-hydroxylation while 4-HNE-conjugated CYP4F11 did not. The 15-HETE dose dependently recapitulated the inhibition of the oxidative burst and dendritic cell differentiation by HZ. The inhibition of CYP4F11 by 4-HNE with consequent accumulation of 15-HETE is supposed to be a crucial step in immune suppression in monocytes and immune imbalance in malaria. << Less
Int. J. Mol. Sci. 24:0-0(2023) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Human cytochrome P450 4F11: heterologous expression in bacteria, purification, and characterization of catalytic function.
Tang Z., Salamanca-Pinzon S.G., Wu Z.L., Xiao Y., Guengerich F.P.
Human cytochrome P450 (P450) 4F11 is still considered an "orphan" because its function is not well characterized. A bacterial expression system was developed for human P450 4F11, producing approximately 230nmol P450 from a 3-l culture of Escherichia coli. P450 4F11 was purified and utilized for un ... >> More
Human cytochrome P450 (P450) 4F11 is still considered an "orphan" because its function is not well characterized. A bacterial expression system was developed for human P450 4F11, producing approximately 230nmol P450 from a 3-l culture of Escherichia coli. P450 4F11 was purified and utilized for untargeted substrate searches in human liver extract using a liquid chromatography/mass spectrometry-based metabolomic and isotopic labeling approach (Tang et al., 2009 [19]). Four fatty acids-palmitic, oleic, arachidonic, and docosahexaenoic-were identified in human liver and verified as substrates of P450 4F11. The products were characterized as omega-hydroxylated fatty acids by gas chromatography-mass spectrometry analysis of their trimethylsilyl derivatives. Kinetic analysis of the oxidation products confirmed that the fatty acids are substrates oxidized by P450 4F11. P450 4F11 also exhibited low activity for some drug N-demethylation reactions but none for activation of several pro-carcinogens. << Less
Arch. Biochem. Biophys. 494:86-93(2010) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.