Reaction participants Show >> << Hide
- Name help_outline (9Z,12Z)-octadecadienoyl-CoA Identifier CHEBI:57383 Charge -4 Formula C39H62N7O17P3S InChIKeyhelp_outline YECLLIMZHNYFCK-RRNJGNTNSA-J SMILEShelp_outline CCCCC\C=C/C\C=C/CCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 41 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (9Z,12Z)-octadecadienoate Identifier CHEBI:30245 (Beilstein: 4139597; CAS: 1509-85-9) help_outline Charge -1 Formula C18H31O2 InChIKeyhelp_outline OYHQOLUKZRVURQ-HZJYTTRNSA-M SMILEShelp_outline CCCCC\C=C/C\C=C/CCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 52 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:40143 | RHEA:40144 | RHEA:40145 | RHEA:40146 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs.
Hunt M.C., Rautanen A., Westin M.A.K., Svensson L.T., Alexson S.E.H.
The maintenance of cellular levels of free fatty acids and acyl-CoAs, the activated form of free fatty acids, is extremely important, as imbalances in lipid metabolism have serious consequences for human health. Acyl-coenzyme A (CoA) thioesterases (ACOTs) hydrolyze acyl-CoAs to the free fatty acid ... >> More
The maintenance of cellular levels of free fatty acids and acyl-CoAs, the activated form of free fatty acids, is extremely important, as imbalances in lipid metabolism have serious consequences for human health. Acyl-coenzyme A (CoA) thioesterases (ACOTs) hydrolyze acyl-CoAs to the free fatty acid and CoASH, and thereby have the potential to regulate intracellular levels of these compounds. We previously identified and characterized a mouse ACOT gene cluster comprised of six genes that apparently arose by gene duplications encoding acyl-CoA thioesterases with localizations in cytosol (ACOT1), mitochondria (ACOT2), and peroxisomes (ACOT3-6). However, the corresponding human gene cluster contains only three genes (ACOT1, ACOT2, and ACOT4) coding for full-length thioesterase proteins, of which only one is peroxisomal (ACOT4). We therefore set out to characterize the human genes, and we show here that the human ACOT4 protein catalyzes the activities of three mouse peroxisomal ACOTs (ACOT3, 4, and 5), being active on succinyl-CoA and medium to long chain acyl-CoAs, while ACOT1 and ACOT2 carry out similar functions to the corresponding mouse genes. These data strongly suggest that the human ACOT4 gene has acquired the functions of three mouse genes by a functional convergent evolution that also provides an explanation for the unexpectedly low number of human genes. << Less
FASEB J. 20:1855-1864(2006) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.
-
Acyl coenzyme A thioesterase Them5/Acot15 is involved in cardiolipin remodeling and fatty liver development.
Zhuravleva E., Gut H., Hynx D., Marcellin D., Bleck C.K., Genoud C., Cron P., Keusch J.J., Dummler B., Esposti M.D., Hemmings B.A.
Acyl coenzyme A (acyl-CoA) thioesterases hydrolyze thioester bonds in acyl-CoA metabolites. The majority of mammalian thioesterases are α/β-hydrolases and have been studied extensively. A second class of Hotdog-fold enzymes has been less well described. Here, we present a structural and functional ... >> More
Acyl coenzyme A (acyl-CoA) thioesterases hydrolyze thioester bonds in acyl-CoA metabolites. The majority of mammalian thioesterases are α/β-hydrolases and have been studied extensively. A second class of Hotdog-fold enzymes has been less well described. Here, we present a structural and functional analysis of a new mammalian mitochondrial thioesterase, Them5. Them5 and its paralog, Them4, adopt the classical Hotdog-fold structure and form homodimers in crystals. In vitro, Them5 shows strong thioesterase activity with long-chain acyl-CoAs. Loss of Them5 specifically alters the remodeling process of the mitochondrial phospholipid cardiolipin. Them5(-/-) mice show deregulation of lipid metabolism and the development of fatty liver, exacerbated by a high-fat diet. Consequently, mitochondrial morphology is affected, and functions such as respiration and β-oxidation are impaired. The novel mitochondrial acyl-CoA thioesterase Them5 has a critical and specific role in the cardiolipin remodeling process, connecting it to the development of fatty liver and related conditions. << Less
Mol. Cell. Biol. 32:2685-2697(2012) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Characterization of an acyl-CoA thioesterase that functions as a major regulator of peroxisomal lipid metabolism.
Hunt M.C., Solaas K., Kase B.F., Alexson S.E.H.
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic ac ... >> More
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic acids or transported to mitochondria for further metabolism. Several of these carboxylic acids are slowly oxidized and may therefore sequester coenzyme A (CoASH). To prevent CoASH sequestration and to facilitate excretion of chain-shortened carboxylic acids, acyl-CoA thioesterases, which catalyze the hydrolysis of acyl-CoAs to the free acid and CoASH, may play important roles. Here we have cloned and characterized a peroxisomal acyl-CoA thioesterase from mouse, named PTE-2 (peroxisomal acyl-CoA thioesterase 2). PTE-2 is ubiquitously expressed and induced at mRNA level by treatment with the peroxisome proliferator WY-14,643 and fasting. Induction seen by these treatments was dependent on the peroxisome proliferator-activated receptor alpha. Recombinant PTE-2 showed a broad chain length specificity with acyl-CoAs from short- and medium-, to long-chain acyl-CoAs, and other substrates including trihydroxycoprostanoyl-CoA, hydroxymethylglutaryl-CoA, and branched chain acyl-CoAs, all of which are present in peroxisomes. Highest activities were found with the CoA esters of primary bile acids choloyl-CoA and chenodeoxycholoyl-CoA as substrates. PTE-2 activity is inhibited by free CoASH, suggesting that intraperoxisomal free CoASH levels regulate the activity of this enzyme. The acyl-CoA specificity of recombinant PTE-2 closely resembles that of purified mouse liver peroxisomes, suggesting that PTE-2 is the major acyl-CoA thioesterase in peroxisomes. Addition of recombinant PTE-2 to incubations containing isolated mouse liver peroxisomes strongly inhibited bile acid-CoA:amino acid N-acyltransferase activity, suggesting that this thioesterase can interfere with CoASH-dependent pathways. We propose that PTE-2 functions as a key regulator of peroxisomal lipid metabolism. << Less
J. Biol. Chem. 277:1128-1138(2002) [PubMed] [EuropePMC]
This publication is cited by 22 other entries.