Enzymes
UniProtKB help_outline | 1,958 proteins |
Reaction participants Show >> << Hide
- Name help_outline butanoyl-CoA Identifier CHEBI:57371 Charge -4 Formula C25H38N7O17P3S InChIKeyhelp_outline CRFNGMNYKDXRTN-CITAKDKDSA-J SMILEShelp_outline CCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 37 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline butanoate Identifier CHEBI:17968 (CAS: 461-55-2) help_outline Charge -1 Formula C4H7O2 InChIKeyhelp_outline FERIUCNNQQJTOY-UHFFFAOYSA-M SMILEShelp_outline CCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:40111 | RHEA:40112 | RHEA:40113 | RHEA:40114 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Human brown fat inducible thioesterase variant 2 cellular localization and catalytic function.
Chen D., Latham J., Zhao H., Bisoffi M., Farelli J., Dunaway-Mariano D.
The mammalian brown fat inducible thioesterase variant 2 (BFIT2), also known as ACOT11, is a multimodular protein containing two consecutive hotdog-fold domains and a C-terminal steroidogenic acute regulatory protein-related lipid transfer domain (StarD14). In this study, we demonstrate that the N ... >> More
The mammalian brown fat inducible thioesterase variant 2 (BFIT2), also known as ACOT11, is a multimodular protein containing two consecutive hotdog-fold domains and a C-terminal steroidogenic acute regulatory protein-related lipid transfer domain (StarD14). In this study, we demonstrate that the N-terminal region of human BFIT2 (hBFIT2) constitutes a mitochondrial location signal sequence, which undergoes mitochondrion-dependent posttranslational cleavage. The mature hBFIT2 is shown to be located in the mitochondrial matrix, whereas the paralog "cytoplasmic acetyl-CoA hydrolase" (CACH, also known as ACOT12) was found in the cytoplasm. In vitro activity analysis of full-length hBFIT2 isolated from stably transfected HEK293 cells demonstrates selective thioesterase activity directed toward long chain fatty acyl-CoA thioesters, thus distinguishing the catalytic function of BFIT2 from that of CACH. The results from a protein-lipid overlay test indicate that the hBFIT2 StarD14 domain binds phosphatidylinositol 4-phosphate. << Less
Biochemistry 51:6990-6999(2012) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Genetic replacement of tesB with PTE1 affects chain-length proportions of 3-hydroxyalkanoic acids produced through beta-oxidation of oleic acid in Escherichia coli.
Seto Y., Kang J., Ming L., Habu N., Nihei K., Ueda S., Maeda I.
Acyl-CoA thioesterase II (TesB), which catalyzes hydrolysis of acyl-CoAs to free fatty acids and CoA, is involved in 3-hydroxyalkanoic acid production in Escherichia coli. Effects of genetic replacement of tesB with Saccharomyces cerevisiae acyl-CoA thioesterase gene PTE1 on 3-hydroxyalkanoic acid ... >> More
Acyl-CoA thioesterase II (TesB), which catalyzes hydrolysis of acyl-CoAs to free fatty acids and CoA, is involved in 3-hydroxyalkanoic acid production in Escherichia coli. Effects of genetic replacement of tesB with Saccharomyces cerevisiae acyl-CoA thioesterase gene PTE1 on 3-hydroxyalkanoic acid production from oleic acid through β-oxidation were examined. Kinetic analyses using β-oxidation intermediates showed that hydrolyses of C4-acyl substrates are more efficient by PTE1 than by TesB. Deletion of tesB in E. coli decreased 3-hydroxybutyric acid, 3-hydroxyhexanoic acid, 3-hydroxyoctanoic acid, and hexanoic acid in medium after cultivation with oleic acid as a sole carbon source. Hexanoic acid concentration was much lower than those of 3-hydroxyacids. In genetic complementation of tesB deletion, use of PTE1, instead of tesB, affected proportions of the 3-hydroxyalkanoic acids. Proportion of 3-hydroxybutyric acid was higher in a PTE1-complemented strain than in a tesB-complemented strain, while proportions of 3-hydroxyhexanoic acid and 3-hydroxyoctanoic acid markedly increased in the tesB-complemented strain. Proportion of 3-hydroxyoctanoic acid did not significantly increase in the PTE1-complemented strain. These data indicate possibilities of 3-hydroxyalkanoic acid production from oleic acid through β-oxidation and customization of their chain-length proportions by genetic replacement of tesB with a gene encoding acyl-CoA thioesterase with a different kinetic property. << Less
J. Biosci. Bioeng. 110:392-396(2010) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Demonstration of dimethylnonanoyl-CoA thioesterase activity in rat liver peroxisomes followed by purification and molecular cloning of the thioesterase involved.
Ofman R., el Mrabet L., Dacremont G., Spijer D., Wanders R.J.
Peroxisomes play an indispensable role in cellular fatty acid oxidation in higher eukaryotes by catalyzing the chain shortening of a distinct set of fatty acids and fatty acid derivatives including pristanic acid (2,6,10,14-tetramethylpentadecanoic acid). Earlier studies have shown that pristanic ... >> More
Peroxisomes play an indispensable role in cellular fatty acid oxidation in higher eukaryotes by catalyzing the chain shortening of a distinct set of fatty acids and fatty acid derivatives including pristanic acid (2,6,10,14-tetramethylpentadecanoic acid). Earlier studies have shown that pristanic acid undergoes three cycles of beta-oxidation in peroxisomes to produce 4,8-dimethylnonanoyl-CoA (DMN-CoA) which is then transported to the mitochondria for full oxidation to CO(2) and H(2)O. In principle, this can be done via two different mechanisms in which DMN-CoA is either converted into the corresponding carnitine ester or hydrolyzed to 4,8-dimethylnonanoic acid plus CoASH. The latter pathway can only be operational if peroxisomes contain 4,8-dimethylnonanoyl-CoA thioesterase activity. In this paper we show that rat liver peroxisomes indeed contain 4,8-dimethylnonanoyl-CoA thioesterase activity. We have partially purified the enzyme involved from peroxisomes and identified the protein as the rat ortholog of a known human thioesterase using MALDI-TOF mass spectrometry in combination with the rat EST database. Heterologous expression studies in Escherichia coli established that the enzyme hydrolyzes not only DMN-CoA but also other branched-chain acyl-CoAs as well as straight-chain acyl-CoA-esters. Our data provide convincing evidence for the existence of the second pathway of acyl-CoA transport from peroxisomes to mitochondria by hydrolysis of the CoA-ester in peroxisomes followed by transport of the free acid to mitochondria, reactivation to its CoA-ester, and oxidation to CO(2) and H(2)O. (c)2002 Elsevier Science. << Less
Biochem. Biophys. Res. Commun. 290:629-634(2002) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Characterization of the formation of branched short-chain fatty acid:CoAs for bitter acid biosynthesis in hop glandular trichomes.
Xu H., Zhang F., Liu B., Huhman D.V., Sumner L.W., Dixon R.A., Wang G.
Bitter acids, known for their use as beer flavoring and for their diverse biological activities, are predominantly formed in hop (Humulus lupulus) glandular trichomes. Branched short-chain acyl-CoAs (e.g. isobutyryl-CoA, isovaleryl-CoA and 2-methylbutyryl-CoA), derived from the degradation of bran ... >> More
Bitter acids, known for their use as beer flavoring and for their diverse biological activities, are predominantly formed in hop (Humulus lupulus) glandular trichomes. Branched short-chain acyl-CoAs (e.g. isobutyryl-CoA, isovaleryl-CoA and 2-methylbutyryl-CoA), derived from the degradation of branched-chain amino acids (BCAAs), are essential building blocks for the biosynthesis of bitter acids in hops. However, little is known regarding what components are needed to produce and maintain the pool of branched short-chain acyl-CoAs in hop trichomes. Here, we present several lines of evidence that both CoA ligases and thioesterases are likely involved in bitter acid biosynthesis. Recombinant HlCCL2 (carboxyl CoA ligase) protein had high specific activity for isovaleric acid as a substrate (K cat /K m = 4100 s(-1) M(-1)), whereas recombinant HlCCL4 specifically utilized isobutyric acid (Kcat/K m = 1800 s(-1) M(-1)) and 2-methylbutyric acid (Kcat/K m = 6900 s(-1) M(-1)) as substrates. Both HlCCLs, like hop valerophenone synthase (HlVPS), were expressed strongly in glandular trichomes and localized to the cytoplasm. Co-expression of HlCCL2 and HlCCL4 with HlVPS in yeast led to significant production of acylphloroglucinols (the direct precursors for bitter acid biosynthesis), which further confirmed the biochemical function of these two HlCCLs in vivo. Functional identification of a thioesterase that catalyzed the reverse reaction of CCLs in mitochondria, together with the comprehensive analysis of genes involved BCAA catabolism, supported the idea that cytosolic CoA ligases are required for linking BCAA degradation and bitter acid biosynthesis in glandular trichomes. The evolution and other possible physiological roles of branched short-chain fatty acid:CoA ligases in planta are also discussed. << Less
Mol. Plant 6:1301-1317(2013) [PubMed] [EuropePMC]
This publication is cited by 16 other entries.
-
Characterization of an acyl-CoA thioesterase that functions as a major regulator of peroxisomal lipid metabolism.
Hunt M.C., Solaas K., Kase B.F., Alexson S.E.H.
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic ac ... >> More
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic acids or transported to mitochondria for further metabolism. Several of these carboxylic acids are slowly oxidized and may therefore sequester coenzyme A (CoASH). To prevent CoASH sequestration and to facilitate excretion of chain-shortened carboxylic acids, acyl-CoA thioesterases, which catalyze the hydrolysis of acyl-CoAs to the free acid and CoASH, may play important roles. Here we have cloned and characterized a peroxisomal acyl-CoA thioesterase from mouse, named PTE-2 (peroxisomal acyl-CoA thioesterase 2). PTE-2 is ubiquitously expressed and induced at mRNA level by treatment with the peroxisome proliferator WY-14,643 and fasting. Induction seen by these treatments was dependent on the peroxisome proliferator-activated receptor alpha. Recombinant PTE-2 showed a broad chain length specificity with acyl-CoAs from short- and medium-, to long-chain acyl-CoAs, and other substrates including trihydroxycoprostanoyl-CoA, hydroxymethylglutaryl-CoA, and branched chain acyl-CoAs, all of which are present in peroxisomes. Highest activities were found with the CoA esters of primary bile acids choloyl-CoA and chenodeoxycholoyl-CoA as substrates. PTE-2 activity is inhibited by free CoASH, suggesting that intraperoxisomal free CoASH levels regulate the activity of this enzyme. The acyl-CoA specificity of recombinant PTE-2 closely resembles that of purified mouse liver peroxisomes, suggesting that PTE-2 is the major acyl-CoA thioesterase in peroxisomes. Addition of recombinant PTE-2 to incubations containing isolated mouse liver peroxisomes strongly inhibited bile acid-CoA:amino acid N-acyltransferase activity, suggesting that this thioesterase can interfere with CoASH-dependent pathways. We propose that PTE-2 functions as a key regulator of peroxisomal lipid metabolism. << Less
J. Biol. Chem. 277:1128-1138(2002) [PubMed] [EuropePMC]
This publication is cited by 22 other entries.