Reaction participants Show >> << Hide
- Name help_outline (9Z)-hexadecenoyl-CoA Identifier CHEBI:61540 Charge -4 Formula C37H60N7O17P3S InChIKeyhelp_outline QBYOCCWNZAOZTL-MDMKAECGSA-J SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC([C@H](C(NCCC(NCCSC(=O)CCCCCCC/C=C\CCCCCC)=O)=O)O)(C)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 28 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline malonyl-CoA Identifier CHEBI:57384 Charge -5 Formula C24H33N7O19P3S InChIKeyhelp_outline LTYOQGRJFJAKNA-DVVLENMVSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 211 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-oxo-(11Z)-octadecenoyl-CoA Identifier CHEBI:76555 Charge -4 Formula C39H62N7O18P3S InChIKeyhelp_outline OUROWZUTGFHRJE-SAIINBSPSA-J SMILEShelp_outline CCCCCC\C=C/CCCCCCCC(=O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:39675 | RHEA:39676 | RHEA:39677 | RHEA:39678 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Elo1p-dependent carboxy-terminal elongation of C14:1Delta(9) to C16:1Delta(11) fatty acids in Saccharomyces cerevisiae.
Schneiter R., Tatzer V., Gogg G., Leitner E., Kohlwein S.D.
Saccharomyces cerevisiae medium-chain acyl elongase (ELO1) mutants have previously been isolated in screens for fatty acid synthetase (FAS) mutants that fail to grow on myristic acid (C14:0)-supplemented media. Here we report that wild-type cells cultivated in myristoleic acid (C14:1Delta(9))-supp ... >> More
Saccharomyces cerevisiae medium-chain acyl elongase (ELO1) mutants have previously been isolated in screens for fatty acid synthetase (FAS) mutants that fail to grow on myristic acid (C14:0)-supplemented media. Here we report that wild-type cells cultivated in myristoleic acid (C14:1Delta(9))-supplemented media synthesized a novel unsaturated fatty acid that was identified as C16:1Delta(11) fatty acid by gas chromatography-mass spectroscopy. Synthesis of C16:1Delta(11) was dependent on a functional ELO1 gene, indicating that Elo1p catalyzes carboxy-terminal elongation of unsaturated fatty acids (alpha-elongation). In wild-type cells, the C16:1Delta(11) elongation product accounted for approximately 12% of the total fatty acids. This increased to 18% in cells that lacked a functional acyl chain desaturase (ole1Delta mutants) and hence were fully dependent on uptake and elongation of C14:1. The observation that ole1Delta mutant cells grew almost like wild type on medium supplemented with C14:1 indicated that uptake and elongation of unsaturated fatty acids were efficient. Interestingly, wild-type cells supplemented with either C14:1 or C16:1 fatty acids displayed dramatic alterations in their phospholipid composition, suggesting that the availability of acyl chains is a dominant determinant of the phospholipid class composition of cellular membranes. In particular, the relative content of the two major phospholipid classes, phosphatidylethanolamine and phosphatidylcholine, was strongly dependent on the chain length of the supplemented fatty acid. Moreover, analysis of the acyl chain composition of individual phospholipid classes in cells supplemented with C14:1 revealed that the relative degree of acyl chain saturation characteristic for each phospholipid class appeared to be conserved, despite the gross alteration in the cellular acyl chain pool. Comparison of the distribution of fatty acids that were taken up and elongated (C16:1Delta(11)) to those that were endogenously synthesized by fatty acid synthetase and then desaturated by Ole1p (C16:1Delta(9)) in individual phospholipid classes finally suggested the presence of two different pools of diacylglycerol species. These results will be discussed in terms of biosynthesis of different phospholipid classes via either the de novo or the Kennedy pathway. << Less
J. Bacteriol. 182:3655-3660(2000) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Palmitoleic (16:1 cis-9) and cis-vaccenic (18:1 cis-11) acid alter lipogenesis in bovine adipocyte cultures.
Burns T.A., Kadegowda A.K., Duckett S.K., Pratt S.L., Jenkins T.C.
Our objectives were to: (1) confirm elongation products of palmitoleic acid (16:1 cis-9) elongation in vitro using stable isotopes and (2) evaluate if exogenous supplementation of palmitoleic acid, elongation products, or both are responsible for decreased desaturation and lipogenesis rates observ ... >> More
Our objectives were to: (1) confirm elongation products of palmitoleic acid (16:1 cis-9) elongation in vitro using stable isotopes and (2) evaluate if exogenous supplementation of palmitoleic acid, elongation products, or both are responsible for decreased desaturation and lipogenesis rates observed with palmitoleic acid supplementation in bovine adipocytes. Stromal vascular cultures were isolated from adipose tissue of two beef carcasses, allowed to reach confluence, held for 2 days, and differentiated with a standard hormone cocktail (day 0). On day 2, secondary differentiation media containing 1 of 4 fatty acid treatments [0 μM fatty acid (control), or 150 μM palmitic (16:0), palmitoleic, or cis-vaccenic (18:1 cis-11)] was added for 4 days. On day 6, cells were incubated with [(13)C] 16:1, [(13)C] 2, or [(13)C] 18:0 to estimate elongation, lipogenic, and desaturation rates using gas chromatography-mass spectrometry. Enrichment of [(13)C] 18:1 cis-11 confirmed 18:1 cis-11 is an elongation product of 16:1. Additionally, [(13)C] label was seen in 20:1 cis-13 and cis-9, cis-11 CLA. Synthesis of [(13)C] 16:0 from [(13)C] 2 was reduced (P < 0.05) in palmitoleic acid and cis-vaccenic acid-treated compared with control cells following 36 h incubation. By 12 h of [(13)C] 18:0 incubation, cells supplemented with palmitoleic acid had reduced (P < 0.05) [(13)C] 18:1 cis-9 compared with all other treatments. Gene expression and fatty acid results support isotopic data for lipogenesis and desaturation. Therefore, palmitoleic acid is actively elongated in vitro and its elongation product, cis-vaccenic acid, can also reduce lipogenesis. However, inhibition of desaturation can be directly attributed to palmitoleic acid and not its elongation products, 18:1 cis-11 or 20:1 cis-13. << Less
Lipids 47:1143-1153(2012) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Role of fatty acid elongases in determination of de novo synthesized monounsaturated fatty acid species.
Green C.D., Ozguden-Akkoc C.G., Wang Y., Jump D.B., Olson L.K.
Enhanced production of monounsaturated fatty acids (FA) derived from carbohydrate-enriched diets has been implicated in the development of obesity and insulin resistance. The FA elongases Elovl-5 and Elovl-6 are regulated by nutrient and hormone status, and have been shown using intact yeast and m ... >> More
Enhanced production of monounsaturated fatty acids (FA) derived from carbohydrate-enriched diets has been implicated in the development of obesity and insulin resistance. The FA elongases Elovl-5 and Elovl-6 are regulated by nutrient and hormone status, and have been shown using intact yeast and mammalian microsome fractions to be involved in the synthesis of monounsaturated FAs (MUFA). Herein, targeted knockdown and overexpression of Elovl-5 or Elovl-6 was used to determine their roles in de novo synthesis of specific MUFA species in mammalian cells. Treatment of rat insulinoma (INS)-1 cells with elevated glucose increased de novo FA synthesis and the ratio of MUFAs to saturated FAs. Elovl-5 knockdown decreased elongation of 16:1,n-7. Elovl-5 overexpression increased synthesis of 18:1,n-7; however, this increase was dependent on stearoyl-CoA desaturase-driven 16:1,n-7 availability. Knockdown of Elovl-6 decreased elongation of 16:0 and 16:1,n-7, resulting in accumulation of 16:1,n-7. Elovl-6 overexpression preferentially drove synthesis of 16:0 elongation products 18:0 and 18:1,n-9 but not 18:1,n-7. These findings demonstrate that coordinated induction of FA elongase and desaturase activity is required for balanced synthesis of specific n-7 versus n-9 MUFA species. Given the relative abundance of 16:0 to 16:1,n-7 and the specificity of Elovl-6 for 16:0, Elovl-6 is a major elongase for 18:1,n-9 production. << Less
J. Lipid Res. 51:1871-1877(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Heterologous reconstitution in yeast of the polyunsaturated fatty acid biosynthetic pathway.
Beaudoin F., Michaelson L.V., Hey S.J., Lewis M.J., Shewry P.R., Sayanova O., Napier J.A.
A Caenorhabditis elegans ORF encoding the presumptive condensing enzyme activity of a fatty acid elongase has been characterized functionally by heterologous expression in yeast. This ORF (F56H11. 4) shows low similarity to Saccharomyces cerevisiae genes involved in fatty acid elongation. The subs ... >> More
A Caenorhabditis elegans ORF encoding the presumptive condensing enzyme activity of a fatty acid elongase has been characterized functionally by heterologous expression in yeast. This ORF (F56H11. 4) shows low similarity to Saccharomyces cerevisiae genes involved in fatty acid elongation. The substrate specificity of the C. elegans enzyme indicated a preference for Delta(6)-desaturated C18 polyunsaturated fatty acids. Coexpression of this activity with fatty acid desaturases required for the synthesis of C20 polyunsaturated fatty acids resulted in the accumulation of arachidonic acid from linoleic acid and eicosapentaenoic acid from alpha-linolenic acid. These results demonstrate the reconstitution of the n-3 and n-6 polyunsaturated fatty acid biosynthetic pathways. The C. elegans ORF is likely to interact with endogenous components of a yeast elongation system, with the heterologous nematode condensing enzyme F56H11.4 causing a redirection of enzymatic activity toward polyunsaturated C18 fatty acid substrates. << Less
Proc. Natl. Acad. Sci. U.S.A. 97:6421-6426(2000) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.