Reaction participants Show >> << Hide
- Name help_outline a long-chain fatty acid Identifier CHEBI:57560 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 733 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:39283 | RHEA:39284 | RHEA:39285 | RHEA:39286 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline |
Related reactions help_outline
Specific form(s) of this reaction
-
RHEA:45257
hexadecanoate(out) => hexadecanoate(in)
-
RHEA:45253
tetradecanoate(out) => tetradecanoate(in)
-
RHEA:39809
octadecanoate(out) => octadecanoate(in)
More general form(s) of this reaction
-
RHEA:38881
a fatty acid(out) => a fatty acid(in)
Publications
-
Comparative biochemical studies of the murine fatty acid transport proteins (FATP) expressed in yeast.
DiRusso C.C., Li H., Darwis D., Watkins P.A., Berger J., Black P.N.
The fatty acid transport protein (FATP) family is a group of proteins that are predicted to be components of specific fatty acid trafficking pathways. In mammalian systems, six different isoforms have been identified, which function in the import of exogenous fatty acids or in the activation of ve ... >> More
The fatty acid transport protein (FATP) family is a group of proteins that are predicted to be components of specific fatty acid trafficking pathways. In mammalian systems, six different isoforms have been identified, which function in the import of exogenous fatty acids or in the activation of very long-chain fatty acids. This has led to controversy as to whether these proteins function as membrane-bound fatty acid transporters or as acyl-CoA synthetases, which activate long-chain fatty acids concomitant with transport. The yeast FATP orthologue, Fat1p, is a dual functional protein and is required for both the import of long-chain fatty acids and the activation of very long-chain fatty acids; these activities intrinsic to Fat1p are separable functions. To more precisely define the roles of the different mammalian isoforms in fatty acid trafficking, the six murine proteins (mmFATP1-6) were expressed and characterized in a genetically defined yeast strain, which cannot transport long-chain fatty acids and has reduced long-chain acyl-CoA synthetase activity (fat1Delta faa1Delta). Each isoform was evaluated for fatty acid transport, fatty acid activation (using C18:1, C20:4, and C24:0 as substrates), and accumulation of very long-chain fatty acids. Murine FATP1, -2, and -4 complemented the defects in fatty acid transport and very long-chain fatty acid activation associated with a deletion of the yeast FAT1 gene; mmFATP3, -5, and -6 did not complement the transport function even though each was localized to the yeast plasma membrane. Both mmFATP3 and -6 activated C20:4 and C20:4, while the expression of mmFATP5 did not substantially increase acyl-CoA synthetases activities using the substrates tested. These data support the conclusion that the different mmFATP isoforms play unique roles in fatty acid trafficking, including the transport of exogenous long-chain fatty acids. << Less
J. Biol. Chem. 280:16829-16837(2005) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Human fatty acid transport protein 2a/very long chain acyl-CoA synthetase 1 (FATP2a/Acsvl1) has a preference in mediating the channeling of exogenous n-3 fatty acids into phosphatidylinositol.
Melton E.M., Cerny R.L., Watkins P.A., DiRusso C.C., Black P.N.
The trafficking of fatty acids across the membrane and into downstream metabolic pathways requires their activation to CoA thioesters. Members of the fatty acid transport protein/very long chain acyl-CoA synthetase (FATP/Acsvl) family are emerging as key players in the trafficking of exogenous fat ... >> More
The trafficking of fatty acids across the membrane and into downstream metabolic pathways requires their activation to CoA thioesters. Members of the fatty acid transport protein/very long chain acyl-CoA synthetase (FATP/Acsvl) family are emerging as key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis. We have expressed two naturally occurring splice variants of human FATP2 (Acsvl1) in yeast and 293T-REx cells and addressed their roles in fatty acid transport, activation, and intracellular trafficking. Although both forms (FATP2a (M(r) 70,000) and FATP2b (M(r) 65,000 and lacking exon3, which encodes part of the ATP binding site)) were functional in fatty acid import, only FATP2a had acyl-CoA synthetase activity, with an apparent preference toward very long chain fatty acids. To further address the roles of FATP2a or FATP2b in fatty acid uptake and activation, LC-MS/MS was used to separate and quantify different acyl-CoA species (C14-C24) and to monitor the trafficking of different classes of exogenous fatty acids into intracellular acyl-CoA pools in 293T-REx cells expressing either isoform. The use of stable isotopically labeled fatty acids demonstrated FATP2a is involved in the uptake and activation of exogenous fatty acids, with a preference toward n-3 fatty acids (C18:3 and C22:6). Using the same cells expressing FATP2a or FATP2b, electrospray ionization/MS was used to follow the trafficking of stable isotopically labeled n-3 fatty acids into phosphatidylcholine and phosphatidylinositol. The expression of FATP2a resulted in the trafficking of C18:3-CoA and C22:6-CoA into both phosphatidylcholine and phosphatidylinositol but with a distinct preference for phosphatidylinositol. Collectively these data demonstrate FATP2a functions in fatty acid transport and activation and provides specificity toward n-3 fatty acids in which the corresponding n-3 acyl-CoAs are preferentially trafficked into acyl-CoA pools destined for phosphatidylinositol incorporation. << Less
J. Biol. Chem. 286:30670-30679(2011) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.