Enzymes
UniProtKB help_outline | 9 proteins |
Reaction participants Show >> << Hide
- Name help_outline (3R)-hydroxyeicosanoyl-CoA Identifier CHEBI:76373 Charge -4 Formula C41H70N7O18P3S InChIKeyhelp_outline KNSVYMFEJLUJST-AFMYZWIISA-J SMILEShelp_outline CCCCCCCCCCCCCCCCC[C@@H](O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2E)-eicosenoyl-CoA Identifier CHEBI:74691 Charge -4 Formula C41H68N7O17P3S InChIKeyhelp_outline ROOFWBIMBMJYGA-DSAUMYHJSA-J SMILEShelp_outline CCCCCCCCCCCCCCCCC\C=C\C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:39175 | RHEA:39176 | RHEA:39177 | RHEA:39178 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis.
Sacco E., Covarrubias A.S., O'Hare H.M., Carroll P., Eynard N., Jones T.A., Parish T., Daffe M., Backbro K., Quemard A.
The Mycobacterium tuberculosis fatty acid synthase type II (FAS-II) system has the unique property of producing unusually long-chain fatty acids involved in the biosynthesis of mycolic acids, key molecules of the tubercle bacillus. The enzyme(s) responsible for dehydration of (3R)-hydroxyacyl-ACP ... >> More
The Mycobacterium tuberculosis fatty acid synthase type II (FAS-II) system has the unique property of producing unusually long-chain fatty acids involved in the biosynthesis of mycolic acids, key molecules of the tubercle bacillus. The enzyme(s) responsible for dehydration of (3R)-hydroxyacyl-ACP during the elongation cycles of the mycobacterial FAS-II remained unknown. This step is classically catalyzed by FabZ- and FabA-type enzymes in bacteria, but no such proteins are present in mycobacteria. Bioinformatic analyses and an essentiality study allowed the identification of a candidate protein cluster, Rv0635-Rv0636-Rv0637. Its expression in recombinant Escherichia coli strains leads to the formation of two heterodimers, Rv0635-Rv0636 (HadAB) and Rv0636-Rv0637 (HadBC), which also occurs in Mycobacterium smegmatis, as shown by split-Trp assays. Both heterodimers exhibit the enzymatic properties expected for mycobacterial FAS-II dehydratases: a marked specificity for both long-chain (>or=C(12)) and ACP-linked substrates. Furthermore, they function as 3-hydroxyacyl dehydratases when coupled with MabA and InhA enzymes from the M. tuberculosis FAS-II system. HadAB and HadBC are the long-sought (3R)-hydroxyacyl-ACP dehydratases. The correlation between the substrate specificities of these enzymes, the organization of the orthologous gene cluster in different Corynebacterineae, and the structure of their mycolic acids suggests distinct roles for both heterodimers during the elongation process. This work describes bacterial monofunctional (3R)-hydroxyacyl-ACP dehydratases belonging to the hydratase 2 family. Their original structure and the fact that they are essential for M. tuberculosis survival make these enzymes very good candidates for the development of antimycobacterial drugs. << Less
Proc Natl Acad Sci U S A 104:14628-14633(2007) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Characterization of four mammalian 3-hydroxyacyl-CoA dehydratases involved in very long-chain fatty acid synthesis.
Ikeda M., Kanao Y., Yamanaka M., Sakuraba H., Mizutani Y., Igarashi Y., Kihara A.
Very long-chain fatty acids are produced through a four-step cycle. However, the 3-hydroxyacyl-CoA dehydratase catalyzing the third step in mammals has remained unidentified. Mammals have four candidates, HACD1-4, based on sequence similarities to the recently identified yeast Phs1, although HACD3 ... >> More
Very long-chain fatty acids are produced through a four-step cycle. However, the 3-hydroxyacyl-CoA dehydratase catalyzing the third step in mammals has remained unidentified. Mammals have four candidates, HACD1-4, based on sequence similarities to the recently identified yeast Phs1, although HACD3 and HACD4 share relatively weak similarity. We demonstrate that all four of these human proteins are indeed 3-hydroxyacyl-CoA dehydratases, in growth suppression experiments using a PHS1-shut off yeast strain and/or in vitro 3-hydroxypalmitoyl-CoA dehydratase assays. HACD proteins exhibit distinct tissue-expression patterns. We also establish that HACD proteins interact with the condensation enzymes ELOVL1-7, with some preferences. << Less
FEBS Lett. 582:2435-2440(2008) [PubMed] [EuropePMC]
This publication is cited by 40 other entries.
-
Revisiting the assignment of Rv0241c to fatty acid synthase type II of Mycobacterium tuberculosis.
Sacco E., Slama N., Baeckbro K., Parish T., Laval F., Daffe M., Eynard N., Quemard A.
The fatty acid synthase type II enzymatic complex of Mycobacterium tuberculosis (FAS-II(Mt)) catalyzes an essential metabolic pathway involved in the biosynthesis of major envelope lipids, mycolic acids. The partner proteins of this singular FAS-II system represent relevant targets for antitubercu ... >> More
The fatty acid synthase type II enzymatic complex of Mycobacterium tuberculosis (FAS-II(Mt)) catalyzes an essential metabolic pathway involved in the biosynthesis of major envelope lipids, mycolic acids. The partner proteins of this singular FAS-II system represent relevant targets for antituberculous drug design. Two heterodimers of the hydratase 2 protein family, HadAB and HadBC, were shown to be involved in the (3R)-hydroxyacyl-ACP dehydration (HAD) step of FAS-II(Mt) cycles. Recently, an additional member of this family, Rv0241c, was proposed to have the same function, based on the heterologous complementation of a HAD mutant of the yeast mitochondrial FAS-II system. In the present work, Rv0241c was able to complement a HAD mutant in the Escherichia coli model but not a dehydratase-isomerase deficient mutant. However, an enzymatic study of the purified protein demonstrated that Rv0241c possesses a broad chain length specificity for the substrate, unlike FAS-II(Mt) enzymes. Most importantly, Rv0241c exhibited a strict dependence on the coenzyme A (CoA) as opposed to AcpM, the natural acyl carrier protein bearing the chains elongated by FAS-II(Mt). The deletion of Rv0241c showed that this gene is not essential to M. tuberculosis survival in vitro. The resulting mutant did not display any change in the mycolic acid profile. This demonstrates that Rv0241c is a trans-2-enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydratase that does not belong to FAS-II(Mt). The relevance of a heterologous complementation strategy to identifying proteins of such a system is questioned. << Less
J. Bacteriol. 192:4037-4044(2010) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.