Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline malonyl-CoA Identifier CHEBI:57384 Charge -5 Formula C24H33N7O19P3S InChIKeyhelp_outline LTYOQGRJFJAKNA-DVVLENMVSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 211 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline tetradecanoyl-CoA Identifier CHEBI:57385 Charge -4 Formula C35H58N7O17P3S InChIKeyhelp_outline DUAFKXOFBZQTQE-QSGBVPJFSA-J SMILEShelp_outline CCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 43 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-oxohexadecanoyl-CoA Identifier CHEBI:57349 Charge -4 Formula C37H60N7O18P3S InChIKeyhelp_outline NQMPLXPCRJOSHL-BBECNAHFSA-J SMILEShelp_outline CCCCCCCCCCCCCC(=O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:39167 | RHEA:39168 | RHEA:39169 | RHEA:39170 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae.
Toke D.A., Martin C.E.
Fatty acid elongation defective mutants were isolated from Saccharomyces cerevisiae by mutagenizing strains that were defective in fatty acid synthase (FAS) activity. Cells of the fatty acid synthase-defective strains can grow when supplemented with tetradecanoic acid (14:0) due to the presence of ... >> More
Fatty acid elongation defective mutants were isolated from Saccharomyces cerevisiae by mutagenizing strains that were defective in fatty acid synthase (FAS) activity. Cells of the fatty acid synthase-defective strains can grow when supplemented with tetradecanoic acid (14:0) due to the presence of membrane bound elongation systems that can extend the 14 carbon fatty acid to longer chain species. After mutagenesis and rescue on medium containing a mixture of 14:0, 16:0 and 18:0, cells were screened for their inability to grow on medium containing only 14:0. From 150,000 colonies, four stable isolates were identified, all of which appear to represent the same complementation group. Gas chromatography of lipid extracts from mutant elo1-1 (designated as elongation defective) cells grown with long or medium chain fatty acids indicates that it fails to efficiently elongate (12, 13, or 14) carbon fatty acids. A gene disrupted fas2Delta::LEU2;elo1Delta::HIS3 mutant incorporates 14-18-carbon fatty acids into membrane lipids, indicating that fatty acid transport is not affected by the mutation. Molecular cloning and sequence analysis of the ELO1 gene suggests that the encoded protein is a membrane bound polypeptide that contains at least five potential membrane spanning regions and a presumptive NADPH binding site. Analysis of the ELO1 mRNA levels indicates that the gene is expressed in cells grown on fatty acid deficient medium. It is rapidly induced in wild type cells that are supplemented with 14:0 and is repressed when cells are supplied with 16- and 18-carbon fatty acids. << Less
-
Mammalian fatty acid elongases.
Jump D.B.
Very long chain fatty acids confer functional diversity on cells by variations in their chain length and degree of unsaturation. Microsomal fatty acid elongation represents the major pathway for determining the chain length of saturated, monounsaturated, and polyunsaturated fatty acids in cellular ... >> More
Very long chain fatty acids confer functional diversity on cells by variations in their chain length and degree of unsaturation. Microsomal fatty acid elongation represents the major pathway for determining the chain length of saturated, monounsaturated, and polyunsaturated fatty acids in cellular lipids. The overall reaction for fatty acid elongation involves four enzymes and utilizes malonyl CoA, NADPH, and fatty acyl CoA as substrates. While the fundamental pathway and its requirements have been known for many years, recent advances have revealed a family of enzymes involved in the first step of the reaction, i.e., the condensation reaction. Seven fatty acid elongase subtypes (Elovl #1-7) have been identified in the mouse, rat, and human genomes. These enzymes determine the rate of overall fatty acid elongation. Moreover, these enzymes also display differential substrate specificity, tissue distribution, and regulation, making them important regulators of cellular lipid composition as well as specific cellular functions. Herein, methods are described to measure elongase activity, analyze elongation products, and alter cellular elongase expression. << Less
Methods Mol Biol 579:375-389(2009) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.