Reaction participants Show >> << Hide
- Name help_outline 22-oxodocosanoate Identifier CHEBI:76298 Charge -1 Formula C22H41O3 InChIKeyhelp_outline PYBWSGBQPKXKOQ-UHFFFAOYSA-M SMILEShelp_outline [O-]C(=O)CCCCCCCCCCCCCCCCCCCCC=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline docosanedioate Identifier CHEBI:76299 Charge -2 Formula C22H40O4 InChIKeyhelp_outline DGXRZJSPDXZJFG-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCCCCCCCCCCCCCCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:39015 | RHEA:39016 | RHEA:39017 | RHEA:39018 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Characterization of the human omega-oxidation pathway for omega-hydroxy-very-long-chain fatty acids.
Sanders R.J., Ofman R., Dacremont G., Wanders R.J., Kemp S.
Very-long-chain fatty acids (VLCFAs) have long been known to be degraded exclusively in peroxisomes via beta-oxidation. A defect in peroxisomal beta-oxidation results in elevated levels of VLCFAs and is associated with the most frequent inherited disorder of the central nervous system white matter ... >> More
Very-long-chain fatty acids (VLCFAs) have long been known to be degraded exclusively in peroxisomes via beta-oxidation. A defect in peroxisomal beta-oxidation results in elevated levels of VLCFAs and is associated with the most frequent inherited disorder of the central nervous system white matter, X-linked adrenoleukodystrophy. Recently, we demonstrated that VLCFAs can also undergo omega-oxidation, which may provide an alternative route for the breakdown of VLCFAs. The omega-oxidation of VLCFA is initiated by CYP4F2 and CYP4F3B, which produce omega-hydroxy-VLCFAs. In this article, we characterized the enzymes involved in the formation of very-long-chain dicarboxylic acids from omega-hydroxy-VLCFAs. We demonstrate that very-long-chain dicarboxylic acids are produced via two independent pathways. The first is mediated by an as yet unidentified, microsomal NAD(+)-dependent alcohol dehydrogenase and fatty aldehyde dehydrogenase, which is encoded by the ALDH3A2 gene and is deficient in patients with Sjögren-Larsson syndrome. The second pathway involves the NADPH-dependent hydroxylation of omega-hydroxy-VLCFAs by CYP4F2, CYP4F3B, or CYP4F3A. Enzyme kinetic studies show that oxidation of omega-hydroxy-VLCFAs occurs predominantly via the NAD(+)-dependent route. Overall, our data demonstrate that in humans all enzymes are present for the complete conversion of VLCFAs to their corresponding very-long-chain dicarboxylic acids. << Less
FASEB J. 22:2064-2071(2008) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.
-
Evidence for two enzymatic pathways for omega-oxidation of docosanoic acid in rat liver microsomes.
Sanders R.J., Ofman R., Valianpour F., Kemp S., Wanders R.J.
We studied the omega-oxidation of docosanoic acid (C22:0) in rat liver microsomes. C22:0 and 22-hydroxy-docosanoic acid (omega-hydroxy-C22:0) were used as substrates, and the reaction products were analyzed by electrospray ionization mass spectrometry. In the presence of NADPH, omega-oxidation of ... >> More
We studied the omega-oxidation of docosanoic acid (C22:0) in rat liver microsomes. C22:0 and 22-hydroxy-docosanoic acid (omega-hydroxy-C22:0) were used as substrates, and the reaction products were analyzed by electrospray ionization mass spectrometry. In the presence of NADPH, omega-oxidation of C22:0 produced not only the hydroxylated product, omega-hydroxy-C22:0, but also the dicarboxylic acid of C22:0, docosanedioic acid (C22:0-DCA). When rat liver microsomes were incubated with omega-hydroxy-C22:0 in the presence of either NAD+ or NADPH, C22:0-DCA was formed readily. Formation of C22:0-DCA from either C22:0 or omega-hydroxy-C22:0 with NADPH as cofactor was inhibited strongly by miconazole and disulfiram, whereas no inhibition was found with NAD+ as cofactor. Furthermore, omega-oxidation of C22:0 was reduced significantly when molecular oxygen was depleted. The high sensitivity toward the more specific cytochrome P450 inhibitors ketoconazole and 17-octadecynoic acid suggests that hydroxylation of C22:0 and omega-hydroxy-C22:0 may be catalyzed by one or more cytochrome P450 hydroxylases belonging to the CYP4A and/or CYP4F subfamily. This study demonstrates that C22:0 is a substrate for the omega-oxidation system in rat liver microsomes and that the product of the first hydroxylation step, omega-hydroxy-C22:0, may undergo further oxidation via two distinct pathways driven by NAD+ or NADPH. << Less
J Lipid Res 46:1001-1008(2005) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.