Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sphing-4-enine-phosphocholine Identifier CHEBI:58906 Charge 1 Formula C23H50N2O5P InChIKeyhelp_outline JLVSPVFPBBFMBE-HXSWCURESA-O SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H]([NH3+])COP([O-])(=O)OCC[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline choline Identifier CHEBI:15354 (Beilstein: 1736748; CAS: 62-49-7) help_outline Charge 1 Formula C5H14NO InChIKeyhelp_outline OEYIOHPDSNJKLS-UHFFFAOYSA-N SMILEShelp_outline C[N+](C)(C)CCO 2D coordinates Mol file for the small molecule Search links Involved in 56 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sphing-4-enine 1-phosphate Identifier CHEBI:60119 Charge -1 Formula C18H37NO5P InChIKeyhelp_outline DUYSYHSSBDVJSM-KRWOKUGFSA-M SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H]([NH3+])COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:38919 | RHEA:38920 | RHEA:38921 | RHEA:38922 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate.
Clair T., Aoki J., Koh E., Bandle R.W., Nam S.W., Ptaszynska M.M., Mills G.B., Schiffmann E., Liotta L.A., Stracke M.L.
Autotaxin (ATX) is an exoenzyme that potently induces tumor cell motility, and enhances experimental metastasis and angiogenesis. ATX was shown recently to be identical to serum lysophospholipase D activity, producing lysophosphatidic acid (LPA) from lyso-glycerophospholipids. LPA, itself a strong ... >> More
Autotaxin (ATX) is an exoenzyme that potently induces tumor cell motility, and enhances experimental metastasis and angiogenesis. ATX was shown recently to be identical to serum lysophospholipase D activity, producing lysophosphatidic acid (LPA) from lyso-glycerophospholipids. LPA, itself a strong chemoattractant for tumor cells, may mediate the actions of ATX. We now extend the substrate specificity to sphingosylphosphorylcholine (SPC), which ATX hydrolyzes to sphingosine-1-phosphate (S1P). Under migration assay conditions, this novel reaction for the production of S1P has a substrate (SPC) K(m) = 0.23 +/-0.07 mM. In our responder cell lines (NIH3T3 clone7 and A2058), S1P exerts maximal biological effects at concentrations of 10-100 nM and is mimicked in its biological effects by ATX plus SPC. These effects include inhibition of ATX- and LPA-stimulated motility, and elevation of activated Rho. In NIH3T3 clone7 cells stimulated with platelet-derived growth factor and treated with 10-25 nM S1P, motility is not inhibited and activation of Rho is unaffected, indicating that S1P possesses specificity in its effects. The exoenzyme ATX can potentially regulate diverse processes such as motility and angiogenesis via the S1P family of receptors. Because ATX hydrolyzes nucleotides, lyso-glycerophospholipids, and phosphosphingolipids into bioactive products, it possesses the ability, depending on the availability of substrates, to act as positive or negative regulator of receptor-mediated activity in the cellular microenvironment. << Less
Cancer Res. 63:5446-5453(2003) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.