Enzymes
UniProtKB help_outline | 5 proteins |
Reaction participants Show >> << Hide
- Name help_outline 1-(9Z-octadecenoyl)-2-hexadecanoyl-sn-glycero-3-phosphocholine Identifier CHEBI:74667 (CAS: 6753-55-5) help_outline Charge 0 Formula C42H82NO8P InChIKeyhelp_outline RRVPPYNAZJRZFR-VYOBOKEXSA-N SMILEShelp_outline CCCCCCCCCCCCCCCC(=O)O[C@H](COC(=O)CCCCCCC\C=C/CCCCCCCC)COP([O-])(=O)OCC[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (9Z)-octadecenoate Identifier CHEBI:30823 (Beilstein: 1913148; CAS: 115-06-0) help_outline Charge -1 Formula C18H33O2 InChIKeyhelp_outline ZQPPMHVWECSIRJ-KTKRTIGZSA-M SMILEShelp_outline CCCCCCCC\C=C/CCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 114 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-hexadecanoyl-sn-glycero-3-phosphocholine Identifier CHEBI:76078 Charge 0 Formula C24H50NO7P InChIKeyhelp_outline NEGQHKSYEYVFTD-HSZRJFAPSA-N SMILEShelp_outline CCCCCCCCCCCCCCCC(=O)O[C@H](CO)COP([O-])(=O)OCC[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:38787 | RHEA:38788 | RHEA:38789 | RHEA:38790 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Positional specificity of lysosomal phospholipase A2.
Abe A., Hiraoka M., Shayman J.A.
Lysosomal phospholipase A(2) (Lpla2) is highly expressed in alveolar macrophages and may mediate the phospholipid metabolism of surfactant. Studies on the properties of this phospholipase are consistent with the presence of both phospholipase A(1) and phospholipase A(2) activities. These activitie ... >> More
Lysosomal phospholipase A(2) (Lpla2) is highly expressed in alveolar macrophages and may mediate the phospholipid metabolism of surfactant. Studies on the properties of this phospholipase are consistent with the presence of both phospholipase A(1) and phospholipase A(2) activities. These activities were studied through the production of O-acyl compounds, produced by the transacylase activity of Lpla2. Liposomes containing POPC and N-acetylsphingosine (NAS) were incubated with the soluble fraction obtained from MDCK cells stably transfected with the mouse Lpla2 gene. Two 1-O-acyl-NASs, 1-O-palmitoyl-NAS and 1-O-oleoyl-NAS, were produced by Lpla2. The formation rate of 1-O-oleoyl-NAS was 2.5-fold that of 1-O-palmitoyl-NAS. When 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (OPPC) was used, the formation rate of 1-O-oleoyl-NAS was 5-fold higher than that of 1-O-palmitoyl-NAS. Thus, Lpla2 can act on acyl groups at both sn-1 and sn-2 positions of POPC and OPPC. When 1-palmitoyl-2-unsaturated acyl-sn-glycero-3-phosphocholines were used as acyl donors, the transacylation of the acyl group from the sn-2 position to NAS was preferred to that of the palmitoyl group from the sn-1 position. An exception was observed for 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC), for which the formation rate of 1-O-palmitoyl-NAS from PAPC was 4-fold greater than that of 1-O-arachidonoyl-NAS. Thus, Lpla2 has broad positional specificity for the sn-1 and sn-2 acyl groups in phosphatidylcholine and phosphatidylethanolamine. << Less
J. Lipid Res. 47:2268-2279(2006) [PubMed] [EuropePMC]
This publication is cited by 40 other entries.
-
HPLC-UV assay for the evaluation of inhibitors of plasma amine oxidase using crude bovine plasma.
Mergemeier K., Galster F., Lehr M.
Recently, we have described a method for evaluation of plasma amine oxidase (PAO) inhibitors, which monitors the formation of 6-(5-phenyl-2H-tetrazol-2-yl)hexanal from the corresponding amine substrate by HPLC with UV-detection using purified bovine PAO. We now investigated, whether crude bovine p ... >> More
Recently, we have described a method for evaluation of plasma amine oxidase (PAO) inhibitors, which monitors the formation of 6-(5-phenyl-2H-tetrazol-2-yl)hexanal from the corresponding amine substrate by HPLC with UV-detection using purified bovine PAO. We now investigated, whether crude bovine plasma can be used as enzyme source in this assay instead of the purified enzyme. With the aid of specific inhibitors, it was ensured that there was no detectable activity of other important amine oxidases in the plasma, namely monoamine oxidase (MAO) A and B and diamine oxidase (DAO). For a series of ω-(5-phenyl-2H-tetrazol-2-yl)alkan-1-amine substrates similar conversion rates were measured for both the purified PAO and crude plasma. The inhibition values determined for the PAO inhibitor 2-(4-phenylphenyl)acetohydrazide (16) under different conditions also corresponded. Additionally, inhibition data of the known PAO inhibitor 2-amino-N-(3-phenylbenzyl)acetamide (17) and a newly synthesised meta-substituted derivative of 16 were determined, which together reflect the two-step inhibition mechanism of these covalent inhibitors. << Less
J Enzyme Inhib Med Chem 34:144-149(2019) [PubMed] [EuropePMC]
-
Two abscisic acid responsive plastid lipase genes involved in jasmonic acid biosynthesis in Arabidopsis thaliana.
Wang K., Guo Q., Froehlich J.E., Hersh H.L., Zienkiewicz A., Howe G.A., Benning C.
Chloroplast membranes with their unique lipid composition are crucial for photosynthesis. Maintenance of the chloroplast membranes requires finely tuned lipid anabolic and catabolic reactions. Despite the presence of a large number of predicted lipid-degrading enzymes in the chloroplasts, their bi ... >> More
Chloroplast membranes with their unique lipid composition are crucial for photosynthesis. Maintenance of the chloroplast membranes requires finely tuned lipid anabolic and catabolic reactions. Despite the presence of a large number of predicted lipid-degrading enzymes in the chloroplasts, their biological functions remain largely unknown. Recently, we described PLASTID LIPASE1 (PLIP1), a plastid phospholipase A<sub>1</sub> that contributes to seed oil biosynthesis. The <i>Arabidopsis thaliana</i> genome encodes two putative PLIP1 paralogs, which we designated PLIP2 and PLIP3. PLIP2 and PLIP3 are also present in the chloroplasts, but likely with different subplastid locations. In vitro analysis indicated that both are glycerolipid A<sub>1</sub> lipases. In vivo, PLIP2 prefers monogalactosyldiacylglycerol as substrate and PLIP3 phosphatidylglycerol. Overexpression of <i>PLIP2</i> or <i>PLIP3</i> severely reduced plant growth and led to accumulation of the bioactive form of jasmonate and related oxylipins. Genetically blocking jasmonate perception restored the growth of the <i>PLIP2/3</i>-overexpressing plants. The expression of <i>PLIP2</i> and <i>PLIP3</i>, but not <i>PLIP1</i>, was induced by abscisic acid (ABA), and <i>plip1 plip2 plip3</i> triple mutants exhibited compromised oxylipin biosynthesis in response to ABA. The <i>plip</i> triple mutants also showed hypersensitivity to ABA. We propose that PLIP2 and PLIP3 provide a mechanistic link between ABA-mediated abiotic stress responses and oxylipin signaling. << Less
Plant Cell 30:1006-1022(2018) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.