Enzymes
UniProtKB help_outline | 1,935 proteins |
Reaction participants Show >> << Hide
- Name help_outline 1,2-di-(9Z-octadecenoyl)-glycerol Identifier CHEBI:52323 (Beilstein: 1730458; CAS: 2442-61-7) help_outline Charge 0 Formula C39H72O5 InChIKeyhelp_outline AFSHUZFNMVJNKX-CLFAGFIQSA-N SMILEShelp_outline CCCCCCCC\C=C/CCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCC\C=C/CCCCCCCC 2D coordinates Mol file for the small molecule Search links Involved in 38 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (9Z-octadecenoyl)-glycerol Identifier CHEBI:75937 Charge 0 Formula C21H40O4 SMILEShelp_outline OCC(CO[*])O[*] 2D coordinates Mol file for the small molecule Search links Involved in 54 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (9Z)-octadecenoate Identifier CHEBI:30823 (CAS: 115-06-0) help_outline Charge -1 Formula C18H33O2 InChIKeyhelp_outline ZQPPMHVWECSIRJ-KTKRTIGZSA-M SMILEShelp_outline CCCCCCCC\C=C/CCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 114 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:38455 | RHEA:38456 | RHEA:38457 | RHEA:38458 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases.
Eichmann T.O., Kumari M., Haas J.T., Farese R.V. Jr., Zimmermann R., Lass A., Zechner R.
Adipose triglyceride lipase (ATGL) is rate-limiting for the initial step of triacylglycerol (TAG) hydrolysis, generating diacylglycerol (DAG) and fatty acids. DAG exists in three stereochemical isoforms. Here we show that ATGL exhibits a strong preference for the hydrolysis of long-chain fatty aci ... >> More
Adipose triglyceride lipase (ATGL) is rate-limiting for the initial step of triacylglycerol (TAG) hydrolysis, generating diacylglycerol (DAG) and fatty acids. DAG exists in three stereochemical isoforms. Here we show that ATGL exhibits a strong preference for the hydrolysis of long-chain fatty acid esters at the sn-2 position of the glycerol backbone. The selectivity of ATGL broadens to the sn-1 position upon stimulation of the enzyme by its co-activator CGI-58. sn-1,3 DAG is the preferred substrate for the consecutive hydrolysis by hormone-sensitive lipase. Interestingly, diacylglycerol-O-acyltransferase 2, present at the endoplasmic reticulum and on lipid droplets, preferentially esterifies sn-1,3 DAG. This suggests that ATGL and diacylglycerol-O-acyltransferase 2 act coordinately in the hydrolysis/re-esterification cycle of TAGs on lipid droplets. Because ATGL preferentially generates sn-1,3 and sn-2,3, it suggests that TAG-derived DAG cannot directly enter phospholipid synthesis or activate protein kinase C without prior isomerization. << Less
J. Biol. Chem. 287:41446-41457(2012) [PubMed] [EuropePMC]
This publication is cited by 31 other entries.
-
Further biochemical characterization of human pancreatic lipase-related protein 2 expressed in yeast cells.
Eydoux C., De Caro J., Ferrato F., Boullanger P., Lafont D., Laugier R., Carriere F., De Caro A.
Recombinant human pancreatic lipase-related protein 2 (rHPLRP2) was produced in the protease A-deficient yeast Pichia pastoris. A major protein with a molecular mass of 50 kDa was purified from the culture medium using SP-Sepharose and Mono Q chromatography. The protein was found to be highly sens ... >> More
Recombinant human pancreatic lipase-related protein 2 (rHPLRP2) was produced in the protease A-deficient yeast Pichia pastoris. A major protein with a molecular mass of 50 kDa was purified from the culture medium using SP-Sepharose and Mono Q chromatography. The protein was found to be highly sensitive to the proteolytic cleavage of a peptide bond in the lid domain. The proteolytic cleavage process occurring in the lid affected both the lipase and phospholipase activities of rHPLRP2. The substrate specificity of the nonproteolyzed rHPLRP2 was investigated using pH-stat and monomolecular film techniques and various substrates (glycerides, phospholipids, and galactolipids). All of the enzyme activities were maximum at alkaline pH values and decreased in the pH 5-7 range corresponding to the physiological conditions occurring in the duodenum. rHPLRP2 was found to act preferentially on substrates forming small aggregates in solution (monoglycerides, egg phosphatidylcholine, and galactolipids) rather than on emulsified substrates such as triolein and diolein. The activity of rHPLRP2 on monogalactosyldiglyceride and digalactosyldiglyceride monomolecular films was determined and compared with that of guinea pig pancreatic lipase-related protein 2, which shows a large deletion in the lid domain. The presence of a full-length lid domain in rHPLRP2 makes it possible for enzyme activity to occur at higher surface pressures. The finding that the inhibition of nonproteolyzed rHPLRP2 by tetrahydrolipstatin and diethyl-p-nitrophenyl phosphate does not involve any bile salt requirements suggests that the rHPLRP2 lid adopts an open conformation in aqueous media. << Less
J. Lipid Res. 48:1539-1549(2007) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Characterization of the enzymatic activity and physiological function of the lipid droplet-associated triacylglycerol lipase AtOBL1.
Mueller A.O., Ischebeck T.
Similar to seeds, pollen tubes contain lipid droplets that store triacylglycerol (TAG), but the fate of this TAG as well as the enzymes involved in its breakdown are unknown. Therefore, two potential TAG lipases from tobacco and Arabidopsis, NtOBL1 (Oil body lipase 1) and AtOBL1, were investigated ... >> More
Similar to seeds, pollen tubes contain lipid droplets that store triacylglycerol (TAG), but the fate of this TAG as well as the enzymes involved in its breakdown are unknown. Therefore, two potential TAG lipases from tobacco and Arabidopsis, NtOBL1 (Oil body lipase 1) and AtOBL1, were investigated, especially with respect to their importance for pollen tube growth. We expressed NtOBL1 and AtOBL1 as fluorescent fusion proteins to study their localization by confocal microscopy. Furthermore, we overexpressed AtOBL1 in Nicotiana benthamiana leaves to characterize it enzymatically. The obl1 mutant was studied in respect to its pollen tube growth in vivo and its seed germination. Both NtOBL1 and AtOBL1 localized to lipid droplets. AtOBL1 was abundant in pollen tubes and seedlings, and acted as a lipase on TAG, diacylglycerol and 1-monoacylglycerol at a pH optimum of 5.5. The obl1 mutant was hampered in pollen tube growth, whereas seedling establishment was not affected under optimal conditions, even though AtOBL1 accounted for a major lipase activity in seeds. TAG could be a direct precursor for the synthesis of membrane lipids in pollen tubes and proteins of the OBL family involved in the flux of acyl groups. << Less
New Phytol. 217:1062-1076(2018) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Cholesteryl ester hydrolase activity is abolished in HSL-/- macrophages but unchanged in macrophages lacking KIAA1363.
Buchebner M., Pfeifer T., Rathke N., Chandak P.G., Lass A., Schreiber R., Kratzer A., Zimmermann R., Sattler W., Koefeler H., Froehlich E., Kostner G.M., Birner-Gruenberger R., Chiang K.P., Haemmerle G., Zechner R., Levak-Frank S., Cravatt B., Kratky D.
Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 ... >> More
Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363(-/-) and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL(-/-) mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363(-/-) but unchanged in HSL(-/-) mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL(-/-) macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages. << Less
J. Lipid Res. 51:2896-2908(2010) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.