Reaction participants Show >> << Hide
- Name help_outline (R)-3-phenyllactoyl-CoA Identifier CHEBI:57254 Charge -4 Formula C30H40N7O18P3S InChIKeyhelp_outline FKMUDVUPQINOSF-NHZRKUKBSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)[C@H](O)Cc1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (E)-cinnamoyl-CoA Identifier CHEBI:57252 Charge -4 Formula C30H38N7O17P3S InChIKeyhelp_outline JVNVHNHITFVWIX-KZKUDURGSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)\C=C\c1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:38355 | RHEA:38356 | RHEA:38357 | RHEA:38358 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
The involvement of coenzyme A esters in the dehydration of (R)-phenyllactate to (E)-cinnamate by Clostridium sporogenes.
Dickert S., Pierik A.J., Linder D., Buckel W.
Phenyllactate dehydratase from Clostridium sporogenes grown anaerobically on L-phenylalanine catalyses the reversible syn-dehydration of (R)-phenyllactate to (E)-cinnamate. Purification yielded a heterotrimeric enzyme complex (130 +/-15 kDa) composed of FldA (46 kDa), FldB (43 kDa) and FldC (40 kD ... >> More
Phenyllactate dehydratase from Clostridium sporogenes grown anaerobically on L-phenylalanine catalyses the reversible syn-dehydration of (R)-phenyllactate to (E)-cinnamate. Purification yielded a heterotrimeric enzyme complex (130 +/-15 kDa) composed of FldA (46 kDa), FldB (43 kDa) and FldC (40 kDa). By re-chromatography on Q-Sepharose, the major part of FldA could be separated and identified as oxygen insensitive cinnamoyl-CoA:phenyllactate CoA-transferase, whereas the transferase depleted trimeric complex retained oxygen sensitive phenyllactate dehydratase activity and contained about one [4Fe-4S] cluster. The dehydratase activity required 10 microM FAD, 0.4 mM ATP, 2.5 mM MgCl2, 0.1 mM NADH, 5 microM cinnamoyl-CoA and small amounts of cell-free extract (10 microg protein per mL) similar to that known for 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. The N-terminus of the homogenous FldA (39 amino acids) is homologous to that of CaiB (39% sequence identity) involved in carnitine metabolism in Escherichia coli. Both enzymes are members of an emerging group of CoA-transferases which exhibit high substrate specificity but apparently do not form enzyme CoA-ester intermediates. It is concluded that dehydration of (R)-phenyllactate to (E)-cinnamate proceeds in two steps, a CoA-transfer from cinnamoyl-CoA to phenyllactate, catalysed by FldA, followed by the dehydration of phenyllactyl-CoA, catalysed by FldB and FldC, whereby the noncovalently bound prosthetic group cinnamoyl-CoA is regenerated. This demonstrates the necessity of a 2-hydroxyacyl-CoA intermediate in the dehydration of 2-hydroxyacids. The transient CoA-ester formation during the dehydration of phenyllactate resembles that during citrate cleavage catalysed by bacterial citrate lyase, which contain a derivative of acetyl-CoA covalently bound to an acyl-carrier-protein (ACP). << Less
Eur. J. Biochem. 267:3874-3884(2000) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites.
Dodd D., Spitzer M.H., Van Treuren W., Merrill B.D., Hryckowian A.J., Higginbottom S.K., Le A., Cowan T.M., Nolan G.P., Fischbach M.A., Sonnenburg J.L.
The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream, where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microb ... >> More
The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream, where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont Clostridium sporogenes that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating C. sporogenes, we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community. << Less
Nature 551:648-652(2017) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
Molecular characterization of phenyllactate dehydratase and its initiator from Clostridium sporogenes.
Dickert S., Pierik A.J., Buckel W.
The heterotrimeric phenyllactate dehydratase from Clostridium sporogenes, FldABC, catalyses the reversible dehydration of (R)-phenyllactate to (E)-cinnamate in two steps: (i) CoA-transfer from the cofactor cinnamoyl-CoA to phenyllactate to yield phenyllactyl-CoA and the product cinnamate mediated ... >> More
The heterotrimeric phenyllactate dehydratase from Clostridium sporogenes, FldABC, catalyses the reversible dehydration of (R)-phenyllactate to (E)-cinnamate in two steps: (i) CoA-transfer from the cofactor cinnamoyl-CoA to phenyllactate to yield phenyllactyl-CoA and the product cinnamate mediated by FldA, a (R)-phenyllactate CoA-transferase; followed by (ii) dehydration of phenyllactyl-CoA to cinnamoyl-CoA mediated by heterodimeric FldBC, a phenyllactyl-CoA dehydratase. Phenyllactate dehydratase requires initiation by ATP, MgCl2 and a reducing agent such as dithionite mediated by an extremely oxygen-sensitive initiator protein (FldI) present in the cell-free extract. All four genes coding for these proteins were cloned and shown to be clustered in the order fldAIBC, which shares over 95% sequence identity of nucleotide and protein levels with a gene cluster detected in the genome of the closely related Clostridium botulinum Hall strain A. FldA shows sequence similarities to a new family of CoA-transferases, which apparently do not form covalent enzyme CoA-ester intermediates. An N-terminal Strep II-Tag containing enzymatically active FldI was overproduced and purified from Escherichia coli. FldI was characterized as a homodimeric protein, which contains one [4Fe-4S]1+/2+ cluster with an electron spin S = 3/2 in the reduced form. The amino acid sequence as well as the chemical and EPR-properties of the pure protein are very similar to those of component A of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans (HgdC), which was able to replace FldI in the activation of phenyllactate dehydratase. Only in the oxidized state, FldI and component A exhibit significant ATPase activity, which appears to be essential for unidirectional electron transfer. Both subunits of phenyllactyl-CoA dehydratase (FldBC) show significant sequence similarities to both subunits of 2-hydroxyglutaryl-CoA dehydratase (HgdAB). The fldAIBC gene cluster resembles the hadAIBC gene cluster in the genome of Clostridium difficile and the hadABC,I genes in C. botulinum. The four subunits of these deduced 2-hydroxyacid dehydratases (65-81% amino acid sequence identity between the had genes) probably code for a 2-hydroxyisocaproate dehydratase involved in leucine fermentation. This enzyme could be the target for metronidazole in the treatment of pseudomembranous enterocolitis caused by C. difficile. << Less
Mol. Microbiol. 44:49-60(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
An allylic ketyl radical intermediate in clostridial amino-acid fermentation.
Kim J., Darley D.J., Buckel W., Pierik A.J.
The human pathogenic bacterium Clostridium difficile thrives by the fermentation of l-leucine to ammonia, CO(2), 3-methylbutanoate and 4-methylpentanoate under anaerobic conditions. The reductive branch to 4-methylpentanoate proceeds by means of the dehydration of (R)-2-hydroxy-4-methylpentanoyl-C ... >> More
The human pathogenic bacterium Clostridium difficile thrives by the fermentation of l-leucine to ammonia, CO(2), 3-methylbutanoate and 4-methylpentanoate under anaerobic conditions. The reductive branch to 4-methylpentanoate proceeds by means of the dehydration of (R)-2-hydroxy-4-methylpentanoyl-CoA to 4-methylpent-2-enoyl-CoA, which is chemically the most demanding step. Ketyl radicals have been proposed to mediate this reaction catalysed by an iron-sulphur-cluster-containing dehydratase, which requires activation by ATP-dependent electron transfer from a second iron-sulphur protein functionally similar to the iron protein of nitrogenase. Here we identify a kinetically competent product-related allylic ketyl radical bound to the enzyme by electron paramagnetic resonance spectroscopy employing isotope-labelled (R)-2-hydroxy-4-methylpentanoyl-CoA species. We also found that the enzyme generated the stabilized pentadienoyl ketyl radical from the substrate analogue 2-hydroxypent-4-enoyl-CoA, supporting the proposed mechanism. Our results imply that also other 2-hydroxyacyl-CoA dehydratases and the related benzoyl-CoA reductases-present in anaerobically living bacteria-employ ketyl radical intermediates. The absence of radical generators such as coenzyme B12, S-adenosylmethionine or oxygen makes these enzymes unprecedented in biochemistry. << Less
Nature 452:239-242(2008) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria.
Kim J., Hetzel M., Boiangiu C.D., Buckel W.
Several clostridia and fusobacteria ferment alpha-amino acids via (R)-2-hydroxyacyl-CoA, which is dehydrated to enoyl-CoA by syn-elimination. This reaction is of great mechanistic interest, since the beta-hydrogen, to be eliminated as proton, is not activated (pK 40-50). A mechanism has been propo ... >> More
Several clostridia and fusobacteria ferment alpha-amino acids via (R)-2-hydroxyacyl-CoA, which is dehydrated to enoyl-CoA by syn-elimination. This reaction is of great mechanistic interest, since the beta-hydrogen, to be eliminated as proton, is not activated (pK 40-50). A mechanism has been proposed, in which one high-energy electron acts as cofactor and transiently reduces the electrophilic thiol ester carbonyl to a nucleophilic ketyl radical anion. The 2-hydroxyacyl-CoA dehydratases are two-component systems composed of an extremely oxygen-sensitive component A, an activator, and component D, the actual dehydratase. Component A, a homodimer with one [4Fe-4S]cluster, transfers an electron to component D, a heterodimer with 1-2 [4Fe-4S]clusters and FMN, concomitant with hydrolysis of two ATP. From component D the electron is further transferred to the substrate, where it facilitates elimination of the hydroxyl group. In the resulting enoxyradical the beta-hydrogen is activated (pK14). After elimination the electron is handed-over to the next incoming substrate without further hydrolysis of ATP. The helix-cluster-helix architecture of component A forms an angle of 105 degrees, which probably opens to 180 degrees upon binding of ATP resembling an archer shooting arrows. Therefore we designated component A as 'Archerase'. Here, we describe 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans, Clostridium symbiosum and Fusobacterium nucleatum, 2-phenyllactate dehydratase from Clostridium sporogenes, 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile, and lactyl-CoA dehydratase from Clostridium propionicum. A relative of the 2-hydroxyacyl-CoA dehydratases is benzoyl-CoA reductase from Thauera aromatica. Analogous but unrelated archerases are the iron proteins of nitrogenase and bacterial protochlorophyllide reductase. In anaerobic organisms, which do not oxidize 2-oxo acids, a second energy-driven electron transfer from NADH to ferredoxin, the electron donor of component A, has been established. The transfer is catalysed by a membrane-bound NADH-ferredoxin oxidoreductase driven by an electrochemical Na(+)-gradient. This enzyme is related to the Rnf proteins involved in Rhodobacter capsulatus nitrogen fixation. << Less
FEMS Microbiol Rev 28:455-468(2004) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.