Enzymes
UniProtKB help_outline | 7 proteins |
Reaction participants Show >> << Hide
- Name help_outline testosterone Identifier CHEBI:17347 (Beilstein: 3653705; CAS: 58-22-0) help_outline Charge 0 Formula C19H28O2 InChIKeyhelp_outline MUMGGOZAMZWBJJ-DYKIIFRCSA-N SMILEShelp_outline [H][C@@]12CCC3=CC(=O)CC[C@]3(C)[C@@]1([H])CC[C@]1(C)[C@@H](O)CC[C@@]21[H] 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11964
Reactive part
help_outline
- Name help_outline FMNH2 Identifier CHEBI:57618 (Beilstein: 6258176) help_outline Charge -2 Formula C17H21N4O9P InChIKeyhelp_outline YTNIXZGTHTVJBW-SCRDCRAPSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 810 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 17β-estradiol Identifier CHEBI:16469 (CAS: 50-28-2) help_outline Charge 0 Formula C18H24O2 InChIKeyhelp_outline VOXZDWNPVJITMN-ZBRFXRBCSA-N SMILEShelp_outline [H][C@]12CC[C@]3(C)[C@@H](O)CC[C@@]3([H])[C@]1([H])CCc1cc(O)ccc21 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formate Identifier CHEBI:15740 (CAS: 71-47-6) help_outline Charge -1 Formula CHO2 InChIKeyhelp_outline BDAGIHXWWSANSR-UHFFFAOYSA-M SMILEShelp_outline [H]C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 98 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11965
Reactive part
help_outline
- Name help_outline FMN Identifier CHEBI:58210 Charge -3 Formula C17H18N4O9P InChIKeyhelp_outline ANKZYBDXHMZBDK-SCRDCRAPSA-K SMILEShelp_outline C12=NC([N-]C(C1=NC=3C(N2C[C@@H]([C@@H]([C@@H](COP(=O)([O-])[O-])O)O)O)=CC(=C(C3)C)C)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 820 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:38191 | RHEA:38192 | RHEA:38193 | RHEA:38194 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Mechanism of estrogen biosynthesis. Participation of multiple enzyme sites in placental aromatase hydroxylations.
Fishman J., Goto J.
J Biol Chem 256:4466-4471(1981) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Impact of R264C and R264H polymorphisms in human aromatase function.
Baravalle R., Di Nardo G., Bandino A., Barone I., Catalano S., Ando S., Gilardi G.
The cytochrome P450 aromatase is involved in the last step of sex hormones biosynthesis by converting androgens into estrogens. The human enzyme is highly polymorphic and literature data correlate aromatase single nucleotide polymorphisms to the onset of pathologies such as breast cancer and neuro ... >> More
The cytochrome P450 aromatase is involved in the last step of sex hormones biosynthesis by converting androgens into estrogens. The human enzyme is highly polymorphic and literature data correlate aromatase single nucleotide polymorphisms to the onset of pathologies such as breast cancer and neurodegenerative diseases. The aims of this study were i) to study the influence of the mutations R264C and R264H on the structure-function of the enzyme also upon phosphorylation by selected kinases and ii) to compare the activity of the variants to that of aromatase wild type in two different cell lines. Far-UV circular dichroism spectroscopy, thermal denaturation experiments and CO-binding assay showed that the two polymorphic variants are correctly folded. Steady-state kinetics experiments showed that rArom R264C and R264H exhibit a 1.5 and 3.4 folds lower catalytic efficiency, respectively, when compared to the wild type protein. Since R264 is part of the consensus motif of PKA and PKG1, phosphorylation experiments were performed to study the effect on aromatase function. Phosphorylation by PKA caused a decrease in activity by 36.2%, 49.3% and 27.9% in the wild type, R264C and R264H proteins respectively. Phosphorylation by PKG1 was also found to decrease the activity by 30.3%, 30.5% and 15.4% in the wild type, R264C and R264H proteins respectively. Experiments performed on the three full-length proteins expressed in human MCF-7 breast cancer cells and rat ST14A neuronal cells showed that, depending on the cell line used, the activity of the proteins is different, implicating different cellular mechanisms modulating aromatase activity. This work demonstrate that R264 polymorphism causes an intrinsic alteration of aromatase activity together with a different consensus for phosphorylation by different kinases, indicating that estrogen production can be different when such mutations are present. These findings are significant in understanding the onset and treatment of pathologies in which aromatase has been shown to be involved. << Less
J. Steroid Biochem. Mol. Biol. 167:23-32(2017) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structural basis for androgen specificity and oestrogen synthesis in human aromatase.
Ghosh D., Griswold J., Erman M., Pangborn W.
Aromatase cytochrome P450 is the only enzyme in vertebrates known to catalyse the biosynthesis of all oestrogens from androgens. Aromatase inhibitors therefore constitute a frontline therapy for oestrogen-dependent breast cancer. In a three-step process, each step requiring 1 mol of O(2), 1 mol of ... >> More
Aromatase cytochrome P450 is the only enzyme in vertebrates known to catalyse the biosynthesis of all oestrogens from androgens. Aromatase inhibitors therefore constitute a frontline therapy for oestrogen-dependent breast cancer. In a three-step process, each step requiring 1 mol of O(2), 1 mol of NADPH, and coupling with its redox partner cytochrome P450 reductase, aromatase converts androstenedione, testosterone and 16alpha-hydroxytestosterone to oestrone, 17beta-oestradiol and 17beta,16alpha-oestriol, respectively. The first two steps are C19-methyl hydroxylation steps, and the third involves the aromatization of the steroid A-ring, unique to aromatase. Whereas most P450s are not highly substrate selective, it is the hallmark androgenic specificity that sets aromatase apart. The structure of this enzyme of the endoplasmic reticulum membrane has remained unknown for decades, hindering elucidation of the biochemical mechanism. Here we present the crystal structure of human placental aromatase, the only natural mammalian, full-length P450 and P450 in hormone biosynthetic pathways to be crystallized so far. Unlike the active sites of many microsomal P450s that metabolize drugs and xenobiotics, aromatase has an androgen-specific cleft that binds the androstenedione molecule snugly. Hydrophobic and polar residues exquisitely complement the steroid backbone. The locations of catalytically important residues shed light on the reaction mechanism. The relative juxtaposition of the hydrophobic amino-terminal region and the opening to the catalytic cleft shows why membrane anchoring is necessary for the lipophilic substrates to gain access to the active site. The molecular basis for the enzyme's androgenic specificity and unique catalytic mechanism can be used for developing next-generation aromatase inhibitors. << Less
Nature 457:219-223(2009) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Purification and characterization of human placental aromatase cytochrome P-450.
Kellis J.T. Jr., Vickery L.E.
Aromatase cytochrome P-450, which catalyzes the conversion of androgens to estrogens, was purified from human placental microsomes. The enzyme was extracted with sodium cholate, fractionated by ammonium sulfate precipitation, and subjected to column chromatography in the presence of its substrate, ... >> More
Aromatase cytochrome P-450, which catalyzes the conversion of androgens to estrogens, was purified from human placental microsomes. The enzyme was extracted with sodium cholate, fractionated by ammonium sulfate precipitation, and subjected to column chromatography in the presence of its substrate, androstenedione, and the nonionic detergent, Nonidet P-40. The preparation exhibits a single major band when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and has a specific content of 11.5 nmol of P-450/mg of protein. The purified enzyme displays spectroscopic properties typical of the ferric and ferrous forms of cytochrome P-450. Full enzymatic activity can be reconstituted with rabbit liver microsomal cytochrome P-450 reductase and Nonidet P-40. Purified aromatase cytochrome P-450 displays catalytic characteristics similar to the enzyme in intact microsomes in the aromatization of androstenedione, 19-hydroxyandrostenedione and 19-oxoandrostenedione. Testosterone and 16 alpha-hydroxytestosterone are aromatized at maximal rates similar to androstenedione, and all substrates exhibit relative affinities corresponding to those observed in microsomes. We have raised rabbit antibodies to the purified enzyme which show considerable specificity and sensitivity on immunoblots. << Less
Comments
Multi-step reactions: RHEA:38179 and RHEA:38183 and RHEA:38187.