Enzymes
UniProtKB help_outline | 1,154 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline CTP Identifier CHEBI:37563 (Beilstein: 4732530) help_outline Charge -4 Formula C9H12N3O14P3 InChIKeyhelp_outline PCDQPRRSZKQHHS-XVFCMESISA-J SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 81 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phytol Identifier CHEBI:17327 (CAS: 150-86-7,7541-49-3) help_outline Charge 0 Formula C20H40O InChIKeyhelp_outline BOTWFXYSPFMFNR-PYDDKJGSSA-N SMILEShelp_outline CC(C)CCC[C@@H](C)CCC[C@@H](C)CCC\C(C)=C\CO 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CDP Identifier CHEBI:58069 Charge -3 Formula C9H12N3O11P2 InChIKeyhelp_outline ZWIADYZPOWUWEW-XVFCMESISA-K SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 27 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phytyl phosphate Identifier CHEBI:75483 Charge -2 Formula C20H39O4P InChIKeyhelp_outline YRXRHZOKDFCXIB-PYDDKJGSSA-L SMILEShelp_outline CC(C)CCC[C@@H](C)CCC[C@@H](C)CCC\C(C)=C\COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:38055 | RHEA:38056 | RHEA:38057 | RHEA:38058 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis.
Valentin H.E., Lincoln K., Moshiri F., Jensen P.K., Qi Q., Venkatesh T.V., Karunanandaa B., Baszis S.R., Norris S.R., Savidge B., Gruys K.J., Last R.L.
We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G-->A transition, resulting in the i ... >> More
We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G-->A transition, resulting in the introduction of a stop codon in At5g04490, a previously unannotated gene, which we named VTE5. Complementation of the mutation with the wild-type transgene largely restored the wild-type tocopherol phenotype. A knockout mutation of the Synechocystis sp PCC 6803 VTE5 homolog slr1652 reduced Synechocystis tocopherol levels by 50% or more. Bioinformatic analysis of VTE5 and slr1652 indicated modest similarity to dolichol kinase. Analysis of extracts from Arabidopsis and Synechocystis mutants revealed increased accumulation of free phytol. Heterologous expression of these genes in Escherichia coli supplemented with free phytol and in vitro assays of recombinant protein produced phytylmonophosphate, suggesting that VTE5 and slr1652 encode phytol kinases. The phenotype of the vte5-1 mutant is consistent with the hypothesis that chlorophyll degradation-derived phytol serves as an important intermediate in seed tocopherol synthesis and forces reevaluation of the role of geranylgeranyl diphosphate reductase in tocopherol biosynthesis. << Less
-
A salvage pathway for phytol metabolism in Arabidopsis.
Ischebeck T., Zbierzak A.M., Kanwischer M., Dormann P.
Chlorophyll is the most abundant photosynthetic pigment in higher plants. During senescence, chlorophyll is hydrolyzed, resulting in the release of free phytol and chlorophyllide. Although the degradation of chlorophyllide has been studied in depth, the metabolic fate of phytol in plants is less c ... >> More
Chlorophyll is the most abundant photosynthetic pigment in higher plants. During senescence, chlorophyll is hydrolyzed, resulting in the release of free phytol and chlorophyllide. Although the degradation of chlorophyllide has been studied in depth, the metabolic fate of phytol in plants is less clear. Here, we provide evidence that phytol can be incorporated into chlorophyll, tocopherol, and lipid esters by Arabidopsis seedlings. Phytol is phosphorylated to phytyl-phosphate and phytyl-diphosphate by two successive kinase activities associated with chloroplast envelope membranes of Arabidopsis. Although phytol kinase is CTP-dependent, the second kinase reaction, phytyl-phosphate kinase, shows broader specificity for CTP, GTP, UTP, and ATP. Therefore, in addition to de novo synthesis from geranylgeranyl-diphosphate, phosphorylation of free phytol represents an alternative route for phytyl-diphosphate production as the precursor for chloroplast prenyl lipid synthesis. Lipid esters are produced after feeding phytol to Arabidopsis seedlings, and they also accumulate in large amounts in leaves during senescence. The predominant phytyl ester that accumulates during senescence is hexadecatrienoic acid phytyl ester. Fatty acid phytyl ester synthesis by protein extracts of Arabidopsis is stimulated in the presence of phytol- and acyl-CoA esters. Thus, Arabidopsis contains a distinct enzymatic machinery for redirecting free phytol released from chlorophyll degradation into chloroplast lipid metabolism. << Less
J Biol Chem 281:2470-2477(2006) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.