Reaction participants Show >> << Hide
- Name help_outline 1-O-hexadecyl-sn-glycero-3-phosphocholine Identifier CHEBI:64496 Charge 0 Formula C24H52NO6P InChIKeyhelp_outline VLBPIWYTPAXCFJ-XMMPIXPASA-N SMILEShelp_outline CCCCCCCCCCCCCCCCOC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 19 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hexadecanoyl-CoA Identifier CHEBI:57379 Charge -4 Formula C37H62N7O17P3S InChIKeyhelp_outline MNBKLUUYKPBKDU-BBECNAHFSA-J SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC(C)([C@H](C(NCCC(NCCSC(CCCCCCCCCCCCCCC)=O)=O)=O)O)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 110 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-O-hexadecyl-2-hexadecanoyl-sn-glycero-3-phosphocholine Identifier CHEBI:72744 (CAS: 88587-94-4) help_outline Charge 0 Formula C40H82NO7P InChIKeyhelp_outline WOTHHEHCEYHCFE-LDLOPFEMSA-N SMILEShelp_outline [H][C@@](COCCCCCCCCCCCCCCCC)(COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:37811 | RHEA:37812 | RHEA:37813 | RHEA:37814 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1): expression in alveolar type II cells and possible involvement in surfactant production.
Nakanishi H., Shindou H., Hishikawa D., Harayama T., Ogasawara R., Suwabe A., Taguchi R., Shimizu T.
Phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), is an important constituent of biological membranes. It is also the major component of serum lipoproteins and pulmonary surfactant. In the remodeling pathway of PC biosynthesis, 1-acyl-sn-glycero-3-phosphocholine (LPC) is converted ... >> More
Phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), is an important constituent of biological membranes. It is also the major component of serum lipoproteins and pulmonary surfactant. In the remodeling pathway of PC biosynthesis, 1-acyl-sn-glycero-3-phosphocholine (LPC) is converted to PC by acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT, EC 2.3.1.23). Whereas LPCAT activity has been detected in several tissues, the structure and detailed biochemical information on the enzyme have not yet been reported. Here, we present the cloning and characterization of a cDNA for mouse lung-type LPCAT (LPCAT1). The cDNA encodes an enzyme of 60 kDa, with three putative transmembrane domains. When expressed in Chinese hamster ovary cells, mouse LPCAT1 exhibited Ca(2+)-independent activity with a pH optimum between 7.4 and 10. LPCAT1 demonstrated a clear preference for saturated fatty acyl-CoAs, and 1-myristoyl- or 1-palmitoyl-LPC as acyl donors and acceptors, respectively. Furthermore, the enzyme was predominantly expressed in the lung, in particular in alveolar type II cells. Thus, the enzyme might synthesize phosphatidylcholine in pulmonary surfactant and play a pivotal role in respiratory physiology. << Less
J. Biol. Chem. 281:20140-20147(2006) [PubMed] [EuropePMC]
This publication is cited by 18 other entries.
-
Identification of a novel noninflammatory biosynthetic pathway of platelet-activating factor.
Harayama T., Shindou H., Ogasawara R., Suwabe A., Shimizu T.
Platelet-activating factor (PAF) is a potent lipid mediator playing various inflammatory and physiological roles. PAF is biosynthesized through two independent pathways called the de novo and remodeling pathways. Lyso-PAF acetyltransferase (lyso-PAF AT) was believed to biosynthesize PAF under infl ... >> More
Platelet-activating factor (PAF) is a potent lipid mediator playing various inflammatory and physiological roles. PAF is biosynthesized through two independent pathways called the de novo and remodeling pathways. Lyso-PAF acetyltransferase (lyso-PAF AT) was believed to biosynthesize PAF under inflammatory conditions, through the remodeling pathway. The first isolated lyso-PAF AT (LysoPAFAT/LPCAT2) had consistent properties. However, we show in this study the finding of a second lyso-PAF AT working under noninflammatory conditions. We partially purified a Ca(2+)-independent lyso-PAF AT from mouse lung. Immunoreactivity for lysophosphatidylcholine acyltransferase 1 (LPCAT1) was detected in the active fraction. Lpcat1-transfected Chinese hamster ovary cells exhibited both LPCAT and lyso-PAF AT activities. We confirmed that LPCAT1 transfers acetate from acetyl-CoA to lyso-PAF by the identification of an acetyl-CoA (and other acyl-CoAs) interacting site in LPCAT1. We further showed that LPCAT1 activity and expression are independent of inflammatory signals. Therefore, these results suggest the molecular diversity of lyso-PAF ATs is as follows: one (LysoPAFAT/LPCAT2) is inducible and activated by inflammatory stimulation, and the other (LPCAT1) is constitutively expressed. Each lyso-PAF AT biosynthesizes inflammatory and physiological amounts of PAF, depending on the cell type. These findings provide important knowledge for the understanding of the diverse pathological and physiological roles of PAF. << Less
J. Biol. Chem. 283:11097-11106(2008) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.