Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline 1-octadecanoyl-sn-glycero-3-phosphocholine Identifier CHEBI:73858 (CAS: 5655-17-4) help_outline Charge 0 Formula C26H54NO7P InChIKeyhelp_outline IHNKQIMGVNPMTC-RUZDIDTESA-N SMILEShelp_outline CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 361 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-octadecanoyl-2-acetyl-sn-glycero-3-phosphocholine Identifier CHEBI:75220 (CAS: 79549-26-1) help_outline Charge 0 Formula C28H56NO8P InChIKeyhelp_outline ILLILTKBYHPOIA-HHHXNRCGSA-N SMILEShelp_outline CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:37707 | RHEA:37708 | RHEA:37709 | RHEA:37710 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells. Cloning and characterization of acetyl-CoA:lyso-PAF acetyltransferase.
Shindou H., Hishikawa D., Nakanishi H., Harayama T., Ishii S., Taguchi R., Shimizu T.
Platelet-activating factor (PAF) is a potent proinflammatory lipid mediator eliciting a variety of cellular functions. Lipid mediators, including PAF are produced from membrane phospholipids by enzymatic cascades. Although a G protein-coupled PAF receptor and degradation enzymes have been cloned a ... >> More
Platelet-activating factor (PAF) is a potent proinflammatory lipid mediator eliciting a variety of cellular functions. Lipid mediators, including PAF are produced from membrane phospholipids by enzymatic cascades. Although a G protein-coupled PAF receptor and degradation enzymes have been cloned and characterized, the PAF biosynthetic enzyme, aceyl-CoA:lyso-PAF acetyltransferase, has not been identified. Here, we cloned lyso-PAF acetyltransferase, which is critical in stimulus-dependent formation of PAF. The enzyme is a 60-kDa microsomal protein with three putative membrane-spanning domains. The enzyme was induced by bacterial endotoxin (lipopolysaccharide), which was suppressed by dexamethasone treatment. Surprisingly, the enzyme catalyzed not only biosynthesis of PAF from lyso-PAF but also incorporation of arachidonoyl-CoA to produce PAF precursor membrane glycerophospholipids (lysophosphatidylcholine acyltransferase activity). Under resting conditions, the enzyme prefers arachidonoyl-CoA and contributes to membrane biogenesis. Upon acute inflammatory stimulation with lipopolysaccharide, the activated enzyme utilizes acetyl-CoA more efficiently and produces PAF. Thus, our findings provide a novel concept that a single enzyme catalyzes membrane biogenesis of inflammatory cells while producing a prophlogistic mediator in response to external stimuli. << Less
J. Biol. Chem. 282:6532-6539(2007) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.