Reaction participants Show >> << Hide
- Name help_outline a 1-acyl-sn-glycero-3-phospho-(1D-myo-inositol) Identifier CHEBI:64771 Charge -1 Formula C10H17O12PR SMILEShelp_outline O[C@H](COC([*])=O)COP([O-])(=O)O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (9Z)-octadecenoyl-CoA Identifier CHEBI:57387 Charge -4 Formula C39H64N7O17P3S InChIKeyhelp_outline XDUHQPOXLUAVEE-BPMMELMSSA-J SMILEShelp_outline CCCCCCCC\C=C/CCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 103 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 1-acyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1D-myo-inositol) Identifier CHEBI:75116 Charge -1 Formula C28H49O13PR SMILEShelp_outline CCCCCCCC\C=C/CCCCCCCC(=O)O[C@H](COC([*])=O)COP([O-])(=O)O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,511 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:37623 | RHEA:37624 | RHEA:37625 | RHEA:37626 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
The microsomal cardiolipin remodeling enzyme acyl-CoA lysocardiolipin acyltransferase is an acyltransferase of multiple anionic lysophospholipids.
Zhao Y., Chen Y.-Q., Li S., Konrad R.J., Cao G.
Phospholipids are subjected to remodeling through the Lands cycle to attain appropriate FA compositions. In recent years, at least two families of lysophospholipid acyltransferases have been identified. Acyl-CoA lysocardiolipin acyltransferase 1 (ALCAT1) was initially identified as a microsomal ly ... >> More
Phospholipids are subjected to remodeling through the Lands cycle to attain appropriate FA compositions. In recent years, at least two families of lysophospholipid acyltransferases have been identified. Acyl-CoA lysocardiolipin acyltransferase 1 (ALCAT1) was initially identified as a microsomal lysocardiolipin acyltransferase. However, the physiological relevance of how this enzyme is involved in cardiolipin remodeling has not been elucidated. We report in this study that ALCAT1 possesses acyltransferase activities toward lysophosphatidylinositol (LPI) and lysophosphatidylglycerol (LPG). Membrane preparations from human embryonic kidney 293 (HEK293) cells overexpressing human ALCAT1 demonstrated significant increases in LPI acyltransferase (LPIAT) and LPG acyltransferase (LPGAT) activities using a variety of fatty acyl-CoAs. The enzyme affinities toward LPI and LPG were determined through kinetic studies suggesting that the LPI binding affinity to ALCAT1 depends on fatty acyl-CoA. Reduced expression of ALCAT1 in Hela cells resulted in significant reductions of LPIAT and LPGAT activities, but not ALCAT activity. Through structural and functional studies, we have identified critical amino acids D168 and L169 within ALCAT1 that are potentially involved in lysophospholipid substrate binding. Our studies provide the molecular basis for future investigations of the physiological function of ALCAT1 and offer evidence of critical amino acids involved in substrate binding for the family of glycerolipid acyltransferases. << Less
J. Lipid Res. 50:945-956(2009) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.
-
Identification of a novel lysophospholipid acyltransferase in Saccharomyces cerevisiae.
Jain S., Stanford N., Bhagwat N., Seiler B., Costanzo M., Boone C., Oelkers P.
The incorporation of unsaturated acyl chains into phospholipids during de novo synthesis is primarily mediated by the 1-acyl-sn-glycerol-3-phosphate acyltransferase reaction. In Saccharomyces cerevisiae, Slc1 has been shown to mediate this reaction, but distinct activity remains after its removal ... >> More
The incorporation of unsaturated acyl chains into phospholipids during de novo synthesis is primarily mediated by the 1-acyl-sn-glycerol-3-phosphate acyltransferase reaction. In Saccharomyces cerevisiae, Slc1 has been shown to mediate this reaction, but distinct activity remains after its removal from the genome. To identify the enzyme that mediates the remaining activity, we performed synthetic genetic array analysis using a slc1Delta strain. One of the genes identified by the screen, LPT1, was found to encode for an acyltransferase that uses a variety of lysophospholipid species, including 1-acyl-sn-glycerol-3-phosphate. Deletion of LPT1 had a minimal effect on 1-acyl-sn-glycerol-3-phosphate acyltransferase activity, but overexpression increased activity 7-fold. Deletion of LPT1 abrogated the esterification of other lysophospholipids, and overexpression increased lysophosphatidylcholine acyltransferase activity 7-fold. The majority of this activity co-purified with microsomes. To test the putative role for this enzyme in selectively incorporating unsaturated acyl chains into phospholipids in vitro, substrate concentration series experiments were performed with the four acyl-CoA species commonly found in yeast. Although the saturated palmitoyl-CoA and stearoyl-CoA showed a lower apparent Km, the monounsaturated palmitoleoyl-CoA and oleoyl-CoA showed a higher apparent Vmax. Arachidonyl-CoA, although not abundant in yeast, also had a high apparent Vmax. Pulse-labeling of lpt1Delta strains showed a 30% reduction in [3H]oleate incorporation into phosphatidylcholine only. Therefore, Lpt1p, a member of the membrane-bound o-acyltransferase gene family, seems to work in conjunction with Slc1 to mediate the incorporation of unsaturated acyl chains into the sn-2 position of phospholipids. << Less
J. Biol. Chem. 282:30562-30569(2007) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast.
Benghezal M., Roubaty C., Veepuri V., Knudsen J., Conzelmann A.
Phosphatidic acid is the intermediate, from which all glycerophospholipids are synthesized. In yeast, it is generated from lysophosphatidic acid, which is acylated by Slc1p, an sn-2-specific, acyl-coenzyme A-dependent 1-acylglycerol-3-phosphate O-acyltransferase. Deletion of SLC1 is not lethal and ... >> More
Phosphatidic acid is the intermediate, from which all glycerophospholipids are synthesized. In yeast, it is generated from lysophosphatidic acid, which is acylated by Slc1p, an sn-2-specific, acyl-coenzyme A-dependent 1-acylglycerol-3-phosphate O-acyltransferase. Deletion of SLC1 is not lethal and does not eliminate all microsomal 1-acylglycerol-3-phosphate O-acyltransferase activity, suggesting that an additional enzyme may exist. Here we show that SLC4 (Yor175c), a gene of hitherto unknown function, encodes a second 1-acyl-sn-glycerol-3-phosphate acyltransferase. SLC4 harbors a membrane-bound O-acyltransferase motif and down-regulation of SLC4 strongly reduces 1-acyl-sn-glycerol-3-phosphate acyltransferase activity in microsomes from slc1Delta cells. The simultaneous deletion of SLC1 and SLC4 is lethal. Mass spectrometric analysis of lipids from slc1Delta and slc4Delta cells demonstrates that in vivo Slc1p and Slc4p generate almost the same glycerophospholipid profile. Microsomes from slc1Delta and slc4Delta cells incubated with [14C]oleoyl-coenzyme A in the absence of lysophosphatidic acid and without CTP still incorporate the label into glycerophospholipids, indicating that Slc1p and Slc4p can also use endogenous lysoglycerophospholipids as substrates. However, the lipid profiles generated by microsomes from slc1Delta and slc4Delta cells are different, and this suggests that Slc1p and Slc4p have a different substrate specificity or have access to different lyso-glycerophospholipid substrates because of a different subcellular location. Indeed, affinity-purified Slc1p displays Mg2+-dependent acyltransferase activity not only toward lysophosphatidic acid but also lyso forms of phosphatidylserine and phosphatidylinositol. Thus, Slc1p and Slc4p may not only be active as 1-acylglycerol-3-phosphate O-acyltransferases but also be involved in fatty acid exchange at the sn-2-position of mature glycerophospholipids. << Less
J. Biol. Chem. 282:30845-30855(2007) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.