Enzymes
UniProtKB help_outline | 7 proteins |
Reaction participants Show >> << Hide
- Name help_outline (9Z)-octadecenoyl-CoA Identifier CHEBI:57387 Charge -4 Formula C39H64N7O17P3S InChIKeyhelp_outline XDUHQPOXLUAVEE-BPMMELMSSA-J SMILEShelp_outline CCCCCCCC\C=C/CCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 103 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-heptadecanoyl-sn-glycero-3-phosphate Identifier CHEBI:74554 Charge -2 Formula C20H39O7P InChIKeyhelp_outline AXKVUJMUBAXXKG-LJQANCHMSA-L SMILEShelp_outline CCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1-heptadecanoyl-2-(9Z)-octadecenoyl-sn-glycero-3-phosphate Identifier CHEBI:74556 Charge -2 Formula C38H71O8P InChIKeyhelp_outline NSSGSPXMZNTFGQ-QJEXQQAGSA-L SMILEShelp_outline CCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])([O-])=O)OC(=O)CCCCCCC\C=C/CCCCCCCC 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:37151 | RHEA:37152 | RHEA:37153 | RHEA:37154 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Enzymatic activities of the human AGPAT isoform 3 and isoform 5: localization of AGPAT5 to mitochondria.
Prasad S.S., Garg A., Agarwal A.K.
The enzyme 1-acylglycerol-3-phosphate-O-acyltransferase (AGPAT) converts lysophosphatidic acid (LPA) to phosphatidic acid (PA). In this study, we show enzymatic properties, tissue distribution, and subcellular localization of human AGPAT3 and AGPAT5. In cells overexpressing these isoforms, the pro ... >> More
The enzyme 1-acylglycerol-3-phosphate-O-acyltransferase (AGPAT) converts lysophosphatidic acid (LPA) to phosphatidic acid (PA). In this study, we show enzymatic properties, tissue distribution, and subcellular localization of human AGPAT3 and AGPAT5. In cells overexpressing these isoforms, the proteins were detected in the nuclear envelope and the endoplasmic reticulum. AGPAT5-GFP fusion protein was localized in the mitochondria of both Chinese hamster ovary and human epithelial cervical cancer cells. Using lysates of AD293 cells infected with AGPAT3 and AGPAT5 recombinant adenovirus, we show that AGPAT3 and AGPAT5 proteins have AGPAT activity. Both the isoforms have similar apparent V(max) of 6.35 and 2.42 nmol/min/mg protein, respectively, for similar LPA. The difference between the two isoforms is in their use of additional lysophospholipids. AGPAT3 shows significant esterification of lysophosphatidylinositol (LPI) in the presence of C20:4 fatty acid, whereas AGPAT5 demonstrates significant acyltransferase activity toward lysophosphatidylethanolamine (LPE) in the presence of C18:1 fatty acid. The AGPAT3 mRNA is ubiquitously expressed in human tissues with several-fold differences in the expression pattern compared with the closely related AGPAT4. In summary, we show that in the presence of different fatty acids, AGPAT3 and AGPAT5 prefer different lysophospholipids as acyl acceptors. More importantly, localization of overexpressed AGPAT5 (this study) as well as GPAT1 and 2 (previous studies) in mitochondria supports the idea that the mitochondria might be capable of synthesizing some of their own glycerophospholipids. << Less
J. Lipid Res. 52:451-462(2011) [PubMed] [EuropePMC]
This publication is cited by 21 other entries.
-
Enzymatic activity of the human 1-acylglycerol-3-phosphate-O-acyltransferase isoform 11: upregulated in breast and cervical cancers.
Agarwal A.K., Garg A.
The conversion of lysophosphatidic acid (LPA) to phosphatidic acid is carried out by the microsomal enzymes 1-acylglycerol-3-phosphate-O-acyltransferases (AGPATs). These enzymes are specific for acylating LPA at the sn-2 (carbon 2) position on the glycerol backbone and are important, because they ... >> More
The conversion of lysophosphatidic acid (LPA) to phosphatidic acid is carried out by the microsomal enzymes 1-acylglycerol-3-phosphate-O-acyltransferases (AGPATs). These enzymes are specific for acylating LPA at the sn-2 (carbon 2) position on the glycerol backbone and are important, because they provide substrates for the synthesis of phospholipids and triglycerides. At least, mutations in one isoform, AGPAT2, cause near complete loss of adipose tissue in humans. We cloned a cDNA predicted to be an AGPAT isoform, AGPAT11. This cDNA has been recently identified also as lysophosphatidylcholine acyltransferase 2 (LPCAT2) and lyso platelet-activating factor acetyltransferase. When AGPAT11/LPCAT2/lyso platelet-activating factor acetyltransferase cDNA was expressed in CHO and HeLa cells, the protein product localized to the endoplasmic reticulum. In vitro enzymatic activity using lysates of Human Embryonic Kidney-293 cells infected with recombinant AGPAT11/LPCAT2/lyso platelet-activating factor-acetyltransferase cDNA adenovirus show that the protein has an AGPAT activity but lacks glycerol-3-phosphate acyltransferase enzymatic activity. The AGPAT11 efficiently uses C18:1 LPA as acyl acceptor and C18:1 fatty acid as an acyl donor. Thus, it has similar substrate specificities for LPA and acyl-CoA as shown for AGPAT9 and 10. Expression of AGPAT11 mRNA was significantly upregulated in human breast, cervical, and colorectal cancer tissues, indicating its adjuvant role in the progression of these cancers. Our enzymatic assays strongly suggest that the cDNA previously identified as LPCAT2/lyso platelet-activating factor-acetyltransferase cDNA has AGPAT activity and thus we prefer to identify this clone as AGPAT11 as well. << Less
J. Lipid Res. 51:2143-2152(2010) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.
-
Characterization of substrate preference for Slc1p and Cst26p in Saccharomyces cerevisiae using lipidomic approaches and an LPAAT activity assay.
Shui G., Guan X.L., Gopalakrishnan P., Xue Y., Goh J.S., Yang H., Wenk M.R.
<h4>Background</h4>Phosphatidic acid (PA) is a key regulated intermediate and precursor for de novo biosynthesis of all glycerophospholipids. PA can be synthesized through the acylation of lysophosphatidic acid (LPA) by 1-acyl-3-phosphate acyltransferase (also called lysophosphatidic acid acyltran ... >> More
<h4>Background</h4>Phosphatidic acid (PA) is a key regulated intermediate and precursor for de novo biosynthesis of all glycerophospholipids. PA can be synthesized through the acylation of lysophosphatidic acid (LPA) by 1-acyl-3-phosphate acyltransferase (also called lysophosphatidic acid acyltransferase, LPAAT). Recent findings have substantiated the essential roles of acyltransferases in various biological functions.<h4>Methodologies/principal findings</h4>We used a flow-injection-based lipidomic approach with approximately 200 multiple reaction monitoring (MRM) transitions to pre-screen fatty acyl composition of phospholipids in the yeast Saccharomyces cerevisiae mutants. Dramatic changes were observed in fatty acyl composition in some yeast mutants including Slc1p, a well-characterized LPAAT, and Cst26p, a recently characterized phosphatidylinositol stearoyl incorporating 1 protein and putative LPAAT in S. cerevisiae. A comprehensive high-performance liquid chromatography-based multi-stage MRM approach (more than 500 MRM transitions) was developed and further applied to quantify individual phospholipids in both strains to confirm these changes. Our data suggest potential fatty acyl substrates as well as fatty acyls that compensate for defects in both Cst26p and Slc1p mutants. These results were consistent with those from a non-radioactive LPAAT enzymatic assay using C17-LPA and acyl-CoA donors as substrates.<h4>Conclusions</h4>We found that Slc1p utilized fatty acid (FA) 18:1 and FA 14:0 as substrates to synthesize corresponding PAs; moreover, it was probably the only acyltransferase responsible for acylation of saturated short-chain fatty acyls (12:0 and 10:0) in S. cerevisiae. We also identified FA 18:0, FA 16:0, FA 14:0 and exogenous FA 17:0 as preferred substrates for Cst26p because transformation with a GFP-tagged CST26 restored the phospholipid profile of a CST26 mutant. Our current findings expand the enzymes and existing scope of acyl-CoA donors for glycerophospholipid biosynthesis. << Less
PLoS ONE 5:e11956-e11956(2010) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.