Enzymes
UniProtKB help_outline | 55,564 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
adenosine37 in tRNA
Identifier
RHEA-COMP:10162
Reactive part
help_outline
- Name help_outline AMP residue Identifier CHEBI:74411 Charge -1 Formula C10H11N5O6P Positionhelp_outline 37 SMILEShelp_outline NC1=NC=NC2=C1N=CN2[C@@H]3O[C@H](COP(=O)(*)[O-])[C@@H](O*)[C@H]3O 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-threonylcarbamoyladenylate Identifier CHEBI:73682 Charge -2 Formula C15H19N6O11P InChIKeyhelp_outline GHLUPQUHEIJRCU-DWVDDHQFSA-L SMILEShelp_outline C[C@@H](O)[C@H](NC(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 508 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N6-L-threonylcarbamoyladenosine37 in tRNA
Identifier
RHEA-COMP:10163
Reactive part
help_outline
- Name help_outline N6-L-threonylcarbamoyladenosine 5'-phosphate residue Identifier CHEBI:74418 Charge -2 Formula C15H17N6O10P Positionhelp_outline 37 SMILEShelp_outline N(C1=NC=NC2=C1N=CN2[C@@H]3O[C@H](COP(=O)(*)[O-])[C@@H](O*)[C@H]3O)C(N[C@H](C([O-])=O)[C@H](O)C)=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:37059 | RHEA:37060 | RHEA:37061 | RHEA:37062 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Publications
-
Mechanism of N6-threonylcarbamoyladenosine (t(6)A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP.
Lauhon C.T.
Genetic and biochemical studies have recently implicated four proteins required in bacteria for the biosynthesis of the universal tRNA modified base N6-threonylcarbamoyl adenosine (t(6)A). In this work, t(6)A biosynthesis in Bacillus subtilis has been reconstituted in vitro and found to indeed req ... >> More
Genetic and biochemical studies have recently implicated four proteins required in bacteria for the biosynthesis of the universal tRNA modified base N6-threonylcarbamoyl adenosine (t(6)A). In this work, t(6)A biosynthesis in Bacillus subtilis has been reconstituted in vitro and found to indeed require the four proteins YwlC (TsaC), YdiB (TsaE), YdiC (TsaB) and YdiE (TsaD). YwlC was found to catalyze the conversion of L-threonine, bicarbonate/CO(2) and ATP to give the intermediate L-threonylcarbamoyl-AMP (TC-AMP) and pyrophosphate as products. TC-AMP was isolated by HPLC and characterized by mass spectrometry and (1)H NMR. NMR analysis showed that TC-AMP decomposes to give AMP and a nearly equimolar mixture of L-threonine and 5-methyl-2-oxazolidinone-4-carboxylate as final products. Under physiological conditions (pH 7.5, 37 °C, 2 mM MgCl(2)), the half-life of TC-AMP was measured to be 3.5 min. Both YwlC (in the presence of pyrophosphatase) and its Escherichia coli homologue YrdC catalyze the formation of TC-AMP while producing only a small molar fraction of AMP. This suggests that CO(2) and not an activated form of bicarbonate is the true substrate for these enzymes. In the presence of pyrophosphate, both enzymes catalyze clean conversion of TC-AMP back to ATP. Purified TC-AMP is efficiently processed to t(6)A by the YdiBCE proteins in the presence of tRNA substrates. This reaction is ATP independent in vitro, despite the known ATPase activity of YdiB. The estimated rate of conversion of TC-AMP by YdiBCE to t(6)A is somewhat lower than the initial rate from L-threonine, bicarbonate and ATP, which together with the stability data, is consistent with previous studies that suggest channeling of this intermediate. << Less
Biochemistry 51:8950-8963(2012) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
In vitro biosynthesis of a universal t6A tRNA modification in Archaea and Eukarya.
Perrochia L., Crozat E., Hecker A., Zhang W., Bareille J., Collinet B., van Tilbeurgh H., Forterre P., Basta T.
N(6)-threonylcarbamoyladenosine (t(6)A) is a modified nucleotide found in all transfer RNAs (tRNAs) decoding codons starting with adenosine. Its role is to facilitate codon-anticodon pairing and to prevent frameshifting during protein synthesis. Genetic studies demonstrated that two universal prot ... >> More
N(6)-threonylcarbamoyladenosine (t(6)A) is a modified nucleotide found in all transfer RNAs (tRNAs) decoding codons starting with adenosine. Its role is to facilitate codon-anticodon pairing and to prevent frameshifting during protein synthesis. Genetic studies demonstrated that two universal proteins, Kae1/YgjD and Sua5/YrdC, are necessary for t(6)A synthesis in Saccharomyces cerevisiae and Escherichia coli. In Archaea and Eukarya, Kae1 is part of a conserved protein complex named kinase, endopeptidase and other proteins of small size (KEOPS), together with three proteins that have no bacterial homologues. Here, we reconstituted for the first time an in vitro system for t(6)A modification in Archaea and Eukarya, using purified KEOPS and Sua5. We demonstrated binding of tRNAs to archaeal KEOPS and detected two distinct adenosine triphosphate (ATP)-dependent steps occurring in the course of the synthesis. Our data, together with recent reconstitution of an in vitro bacterial system, indicated that t(6)A cannot be catalysed by Sua5/YrdC and Kae1/YgjD alone but requires accessory proteins that are not universal. Remarkably, we observed interdomain complementation when bacterial, archaeal and eukaryotic proteins were combined in vitro, suggesting a conserved catalytic mechanism for the biosynthesis of t(6)A in nature. These findings shed light on the reaction mechanism of t(6)A synthesis and evolution of molecular systems that promote translation fidelity in present-day cells. << Less
Nucleic Acids Res. 41:1953-1964(2013) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.