Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline (9Z)-octadecenoyl-CoA Identifier CHEBI:57387 Charge -4 Formula C39H64N7O17P3S InChIKeyhelp_outline XDUHQPOXLUAVEE-BPMMELMSSA-J SMILEShelp_outline CCCCCCCC\C=C/CCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 103 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AH2 Identifier CHEBI:17499 Charge 0 Formula RH2 SMILEShelp_outline *([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2,812 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (9Z,12Z)-octadecadienoyl-CoA Identifier CHEBI:57383 Charge -4 Formula C39H62N7O17P3S InChIKeyhelp_outline YECLLIMZHNYFCK-RRNJGNTNSA-J SMILEShelp_outline CCCCC\C=C/C\C=C/CCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 41 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline A Identifier CHEBI:13193 Charge Formula R SMILEShelp_outline * 2D coordinates Mol file for the small molecule Search links Involved in 2,883 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36863 | RHEA:36864 | RHEA:36865 | RHEA:36866 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Caenorhabditis elegans Delta12-desaturase FAT-2 is a bifunctional desaturase able to desaturate a diverse range of fatty acid substrates at the Delta12 and Delta15 positions.
Zhou X.-R., Green A.G., Singh S.P.
Caenorhabditis elegans FAT-2 has been characterized as fatty acid Δ12-desaturase able to desaturate C16 and C18 fatty acids. However, in this report we show that when expressed in yeast cells this enzyme can also catalyze Δ15 desaturation. This results in the production of both linoleic acid (ω6 C ... >> More
Caenorhabditis elegans FAT-2 has been characterized as fatty acid Δ12-desaturase able to desaturate C16 and C18 fatty acids. However, in this report we show that when expressed in yeast cells this enzyme can also catalyze Δ15 desaturation. This results in the production of both linoleic acid (ω6 C18:2Δ9,12) and linolenic acid (ω3 C18:3Δ9,12,15) from oleic acid (C18:1Δ9) substrate, and hexadecadienoic acid (ω4 C16:2Δ9,12) and hexadecatrienoic acid (ω1 C16:3Δ9,12,15) from palmitoleic acid (C16:1Δ9) substrate. In addition, this enzyme can also produce C14:2Δ9,12, C15:2Δ9,12, C17:2Δ9,12, and C18:4Δ6,9,12,15 when C14:1Δ9, C15:1Δ9, C17:1Δ9, and C18:3Δ6,9,12 substrates are available in yeast cells. Mass spectrometry analysis of 2,4-dimethyloxazoline modification of fatty acid methyl esters confirms the positions of all newly formed double bonds. These results indicate that when expressed in yeast the C. elegans Δ12-desaturase CeFAT-2 shows a characteristic of a bifunctional Δ12/Δ15-desaturase and has a great deal of elasticity with respect to fatty acid chain length in being able to accept fatty acids ranging from C14 to C18. Interestingly, despite possessing a bifunctional Δ12/Δ15 desaturation activity, phylogenetic analysis suggests that C. elegans Δ12-desaturase CeFAT-2 might have arisen independently from other reported dual Δ12/Δ15-desaturases from fungi and protozoa. << Less
J. Biol. Chem. 286:43644-43650(2011) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Identification and characterization of an animal delta(12) fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae.
Peyou-Ndi M.M., Watts J.L., Browse J.
We have cloned a Caenorhabditis elegans cDNA encoding a Delta12 fatty acid desaturase and demonstrated its activity by heterologous expression in Saccharomyces cerevisiae. The predicted protein is highly homologous both to the cloned plant genes with similar function and to the published sequence ... >> More
We have cloned a Caenorhabditis elegans cDNA encoding a Delta12 fatty acid desaturase and demonstrated its activity by heterologous expression in Saccharomyces cerevisiae. The predicted protein is highly homologous both to the cloned plant genes with similar function and to the published sequence of the C. elegans omega-3 fatty acid desaturase. In addition, it conforms to the structural constraints expected of a membrane-bound fatty acid desaturase including the canonical histidine-rich regions. This is the first report of a cloned animal Delta(12) desaturase gene. Expression of this cDNA in yeast resulted in the accumulation of 16:2 and 18:2 (linoleic) acids. The increase of membrane fluidity brought about by this change in unsaturation was measured. The production of polyunsaturated fatty acids in yeast cells and the concomitant increase in membrane fluidity was correlated with a modest increase in growth rate at low temperature and with increased resistance to ethanol and oxidative stress. << Less
Arch. Biochem. Biophys. 376:399-408(2000) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans.
Watts J.L., Browse J.
Polyunsaturated fatty acids (PUFAs) are important membrane components and precursors of signaling molecules. To investigate the roles of these fatty acids in growth, development, and neurological function in an animal system, we isolated Caenorhabditis elegans mutants deficient in PUFA synthesis b ... >> More
Polyunsaturated fatty acids (PUFAs) are important membrane components and precursors of signaling molecules. To investigate the roles of these fatty acids in growth, development, and neurological function in an animal system, we isolated Caenorhabditis elegans mutants deficient in PUFA synthesis by direct analysis of fatty acid composition. C. elegans possesses all the desaturase and elongase activities to synthesize arachidonic acid and eicosapentaenoic acid from saturated fatty acid precursors. In our screen we identified mutants with defects in each fatty acid desaturation and elongation step of the PUFA biosynthetic pathway. The fatty acid compositions of the mutants reveal the substrate preferences of the desaturase and elongase enzymes and clearly demarcate the steps of this pathway. The mutants show that C. elegans does not require n3 or Delta5-unsaturated PUFAs for normal development under laboratory conditions. However, mutants with more severe PUFA deficiencies display growth and neurological defects. The mutants provide tools for investigating the roles of PUFAs in membrane biology and cell function in this animal model. << Less
Proc. Natl. Acad. Sci. U.S.A. 99:5854-5859(2002) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.