Enzymes
| UniProtKB help_outline | 1 proteins |
| Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline Nω-hydroxy-L-arginine Identifier CHEBI:60107 Charge 1 Formula C6H15N4O3 InChIKeyhelp_outline FQWRAVYMZULPNK-BYPYZUCNSA-O SMILEShelp_outline [NH3+][C@@H](CCCNC(=[NH2+])NO)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hydroxyurea Identifier CHEBI:44423 (Beilstein: 1741548; CAS: 127-07-1) help_outline Charge 0 Formula CH4N2O2 InChIKeyhelp_outline VSNHCAURESNICA-UHFFFAOYSA-N SMILEShelp_outline NC(=O)NO 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-ornithine Identifier CHEBI:46911 Charge 1 Formula C5H13N2O2 InChIKeyhelp_outline AHLPHDHHMVZTML-BYPYZUCNSA-O SMILEShelp_outline [NH3+]CCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 58 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:36791 | RHEA:36792 | RHEA:36793 | RHEA:36794 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| KEGG help_outline | ||||
| MetaCyc help_outline |
Publications
-
Molecular cloning and heterologous expression of a biosynthetic gene cluster for the antitubercular agent D-cycloserine produced by Streptomyces lavendulae.
Kumagai T., Koyama Y., Oda K., Noda M., Matoba Y., Sugiyama M.
In the present study, we successfully cloned a 21-kb DNA fragment containing a d-cycloserine (DCS) biosynthetic gene cluster from a DCS-producing Streptomyces lavendulae strain, ATCC 11924. The putative gene cluster consists of 10 open reading frames (ORFs), designated dcsA to dcsJ. This cluster i ... >> More
In the present study, we successfully cloned a 21-kb DNA fragment containing a d-cycloserine (DCS) biosynthetic gene cluster from a DCS-producing Streptomyces lavendulae strain, ATCC 11924. The putative gene cluster consists of 10 open reading frames (ORFs), designated dcsA to dcsJ. This cluster includes two ORFs encoding D-alanyl-D-alanine ligase (dcsI) and a putative membrane protein (dcsJ) as the self-resistance determinants of the producer organism, indicated by our previous work. When the 10 ORFs were introduced into DCS-nonproducing Streptomyces lividans 66 as a heterologous host cell, the transformant acquired DCS productivity. This reveals that the introduced genes are responsible for the biosynthesis of DCS. As anticipated, the disruption of dcsG, seen in the DCS biosynthetic gene cluster, made it possible for the strain ATCC 11924 to lose its DCS production. We here propose the DCS biosynthetic pathway. First, L-serine is O acetylated by a dcsE-encoded enzyme homologous to homoserine O-acetyltransferase. Second, O-acetyl-L-serine accepts hydroxyurea via an O-acetylserine sulfhydrylase homolog (dcsD product) and forms O-ureido-L-serine. The hydroxyurea must be supplied by the catalysis of a dcsB-encoded arginase homolog using the L-arginine derivative, N(G)-hydroxy-L-arginine. The resulting O-ureido-L-serine is then racemized to O-ureido-D-serine by a homolog of diaminopimelate epimerase. Finally, O-ureido-D-serine is cyclized to form DCS with the release of ammonia and carbon dioxide. The cyclization must be done by the dcsG or dcsH product, which belongs to the ATP-grasp fold family of protein. << Less
Antimicrob. Agents Chemother. 54:1132-1139(2010) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Establishment of an in vitro D-cycloserine-synthesizing system by using O-ureido-L-serine synthase and D-cycloserine synthetase found in the biosynthetic pathway.
Uda N., Matoba Y., Kumagai T., Oda K., Noda M., Sugiyama M.
We have recently cloned a DNA fragment containing a gene cluster that is responsible for the biosynthesis of an antituberculosis antibiotic, D-cycloserine. The gene cluster is composed of 10 open reading frames, designated dcsA to dcsJ. Judging from the sequence similarity between each putative ge ... >> More
We have recently cloned a DNA fragment containing a gene cluster that is responsible for the biosynthesis of an antituberculosis antibiotic, D-cycloserine. The gene cluster is composed of 10 open reading frames, designated dcsA to dcsJ. Judging from the sequence similarity between each putative gene product and known proteins, DcsC, which displays high homology to diaminopimelate epimerase, may catalyze the racemization of O-ureidoserine. DcsD is similar to O-acetylserine sulfhydrylase, which generates L-cysteine using O-acetyl-L-serine with sulfide, and therefore, DcsD may be a synthase to generate O-ureido-L-serine using O-acetyl-L-serine and hydroxyurea. DcsG, which exhibits similarity to a family of enzymes with an ATP-grasp fold, may be an ATP-dependent synthetase converting O-ureido-D-serine into D-cycloserine. In the present study, to characterize the enzymatic functions of DcsC, DcsD, and DcsG, each protein was overexpressed in Escherichia coli and purified to near homogeneity. The biochemical function of each of the reactions catalyzed by these three proteins was verified by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and, in some cases, mass spectrometry. The results from this study demonstrate that by using a mixture of the three purified enzymes and the two commercially available substrates O-acetyl-L-serine and hydroxyurea, synthesis of D-cycloserine was successfully attained. These in vitro studies yield the conclusion that DcsD and DcsG are necessary for the syntheses of O-ureido-L-serine and D-cycloserine, respectively. DcsD was also able to catalyze the synthesis of L-cysteine when sulfide was added instead of hydroxyurea. Furthermore, the present study shows that DcsG can also form other cyclic d-amino acid analogs, such as D-homocysteine thiolactone. << Less
Antimicrob. Agents Chemother. 57:2603-2612(2013) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Heme protein and hydroxyarginase necessary for biosynthesis of D-cycloserine.
Kumagai T., Takagi K., Koyama Y., Matoba Y., Oda K., Noda M., Sugiyama M.
We have recently cloned a D-cycloserine (DCS) biosynthetic gene cluster that consists of 10 genes, designated dcsA~dcsJ, from Streptomyces lavendulae ATCC 11924 (16). In the predicted pathway of hydroxyurea (HU) formation in DCS biosynthesis, L-arginine (L-Arg) must first be hydroxylated, prior to ... >> More
We have recently cloned a D-cycloserine (DCS) biosynthetic gene cluster that consists of 10 genes, designated dcsA~dcsJ, from Streptomyces lavendulae ATCC 11924 (16). In the predicted pathway of hydroxyurea (HU) formation in DCS biosynthesis, L-arginine (L-Arg) must first be hydroxylated, prior to the hydrolysis of N(ω)-hydroxy-L-arginine (NHA) by DcsB, an arginase homolog. The hydroxylation of L-Arg is known to be catalyzed by nitric oxide synthase (NOS). In this study, to verify the supply route of HU, we created a dcsB-disrupted mutant, ΔdcsB. While the mutant lost DCS productivity, its productivity was restored by complementation of dcsB, and also by the addition of HU but not NHA, suggesting that HU is supplied by DcsB. A NOS-encoding gene, nos, from S. lavendulae chromosome was cloned, to create a nos-disrupted mutant. However, the mutant maintained the DCS productivity, suggesting that NOS is not necessary for DCS biosynthesis. To clarify the identity of an enzyme necessary for NHA formation, a dcsA-disrupted mutant, designated ΔdcsA, was also created. The mutant lost DCS productivity, whereas the DCS productivity was restored by complementation of dcsA. The addition of NHA to the culture medium of ΔdcsA mutant was also effective to restore DCS production. These results indicate that the dcsA gene product, DcsA, is an enzyme essential to generate NHA as a precursor in the DCS biosynthetic pathway. Spectroscopic analyses of the recombinant DcsA revealed that it is a heme protein, supporting an idea that DcsA is an enzyme catalyzing hydroxylation. << Less
Antimicrob. Agents Chemother. 56:3682-3689(2012) [PubMed] [EuropePMC]