Reaction participants Show >> << Hide
- Name help_outline N-acetyl-α-D-glucosaminyl-di-trans,octa-cis-undecaprenyl diphosphate Identifier CHEBI:62959 Charge -2 Formula C63H103NO12P2 InChIKeyhelp_outline NEVJGTXBHJNFAZ-JXCMATCVSA-L SMILEShelp_outline CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP([O-])(=O)OP([O-])(=O)OC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-galactose Identifier CHEBI:66914 Charge -2 Formula C15H22N2O17P2 InChIKeyhelp_outline HSCJRCZFDFQWRP-ABVWGUQPSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 105 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline β-D-Gal-(1→3)-α-D-GlcNAc-di-trans,octa-cis-undecaprenyl diphosphate Identifier CHEBI:73973 Charge -2 Formula C69H113NO17P2 InChIKeyhelp_outline WZXSCLOEBAZOTJ-SHJFEDHZSA-L SMILEShelp_outline CC(=O)N[C@H]1[C@H](O[C@H](CO)[C@@H](O)[C@@H]1O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O)OP([O-])(=O)OP([O-])(=O)OC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(\C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 576 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36747 | RHEA:36748 | RHEA:36749 | RHEA:36750 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
The wbbD gene of E. coli strain VW187 (O7:K1) encodes a UDP-Gal: GlcNAc{alpha}-pyrophosphate-R {beta}1,3-galactosyltransferase involved in the biosynthesis of O7-specific lipopolysaccharide.
Riley J.G., Menggad M., Montoya-Peleaz P.J., Szarek W.A., Marolda C.L., Valvano M.A., Schutzbach J.S., Brockhausen I.
In this work, we demonstrate that the wbbD gene of the O7 lipopolysaccharide (LPS) biosynthesis cluster in Escherichia coli strain VW187 (O7:K1) encodes a galactosyltransferase involved in the synthesis of the O7-polysaccharide repeating unit. The galactosyltransferase catalyzed the transfer of Ga ... >> More
In this work, we demonstrate that the wbbD gene of the O7 lipopolysaccharide (LPS) biosynthesis cluster in Escherichia coli strain VW187 (O7:K1) encodes a galactosyltransferase involved in the synthesis of the O7-polysaccharide repeating unit. The galactosyltransferase catalyzed the transfer of Gal from UDP-Gal to the GlcNAc residue of a GlcNAc-pyrophosphate-lipid acceptor. A mutant strain with a defective wbbD gene was unable to form O7 LPS and lacked this specific galactosyltransferase activity. The normal phenotype was restored by complementing the mutant with the cloned wbbD gene. To characterize the WbbD galactosyltransferase, we used a novel acceptor substrate containing GlcNAcalpha-pyrophosphate covalently bound to a hydrophobic phenoxyundecyl moiety (GlcNAc alpha-O-PO(3)-PO(3)-(CH(2))(11)-O-phenyl). The WbbD galactosyltransferase had optimal activity at pH 7 in the presence of 2.5 mM MnCl(2). Detergents in the assay did not increase glycosyl transfer. Digestion of enzyme product by highly purified bovine testicular beta-galactosidase demonstrated a beta-linkage. Cleavage of product by pyrophosphatase and phosphatase, followed by HPLC and NMR analyses, revealed a disaccharide with the structure Gal beta1-3GlcNAc. Our results conclusively demonstrate that WbbD is a UDP-Gal: GlcNAcalpha-pyrophosphate-R beta1,3-galactosyltransferase and suggest that the novel synthetic glycolipid acceptor may be generally applicable to characterize other bacterial glycosyltransferases. << Less
-
Acceptor substrate specificity of UDP-Gal: GlcNAc-R beta1,3-galactosyltransferase (WbbD) from Escherichia coli O7:K1.
Brockhausen I., Riley J.G., Joynt M., Yang X., Szarek W.A.
Most of the glycosyltransferases involved in O antigen biosynthesis have not yet been characterized. We recently demonstrated that the wbbD gene of the O7 lipopolysaccharide biosynthesis cluster in E. coli strain VW187 (O7:K1) encodes WbbD, a UDP-Gal: GlcNAcalpha-pyrophosphate-lipid beta1,3-Gal-tr ... >> More
Most of the glycosyltransferases involved in O antigen biosynthesis have not yet been characterized. We recently demonstrated that the wbbD gene of the O7 lipopolysaccharide biosynthesis cluster in E. coli strain VW187 (O7:K1) encodes WbbD, a UDP-Gal: GlcNAcalpha-pyrophosphate-lipid beta1,3-Gal-transferase (EC 2.4.1., accession number AAC27537) that transfers the second sugar moiety in the assembly of the O7 repeating unit. The enzyme utilizes undecaprenol-pyrophosphate-GlcNAc as a natural acceptor substrate, but can also transfer Gal to GlcNAcalpha-PO(3)-PO(3)-(CH(2))(11)-O-phenyl (GlcNAc-PP-PhU). A number of acceptor substrate analogs have now been tested to further characterize the acceptor specificity of WbbD and to determine the roles of the pyrophosphate bond and the lipid moiety in the acceptor substrate. The enzyme was found to have a low activity with a substrate containing only one phosphate group directly alpha-linked to GlcNAc, and the enzyme was inactive when the phosphate was absent or further removed from the anomeric carbon of GlcNAc. Modifications of the lipid chain yielded substrates with variable activities. GlcNAc derivatives that were inactive as substrates did not inhibit WbbD suggesting that these compounds did not bind to the active site of the enzyme. The specificity of mammalian beta4-galactosyltransferase I has been compared to that of WbbD. The results indicate that the bacterial WbbD enzyme has a distinct specificity for GlcNAc-PP-lipid, and that WbbD recognition of its acceptor substrate is very different from that of the ubiquitous mammalian beta4-galactosyltransferase I. These studies help to understand mechanisms of O antigen synthesis, to develop methods to synthesize defined oligosaccharide structures and to develop specific O antigen inhibitors. << Less