Reaction participants Show >> << Hide
- Name help_outline hexadecanoyl-CoA Identifier CHEBI:57379 Charge -4 Formula C37H62N7O17P3S InChIKeyhelp_outline MNBKLUUYKPBKDU-BBECNAHFSA-J SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC(C)([C@H](C(NCCC(NCCSC(CCCCCCCCCCCCCCC)=O)=O)=O)O)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 110 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sphing-4-enine Identifier CHEBI:57756 Charge 1 Formula C18H38NO2 InChIKeyhelp_outline WWUZIQQURGPMPG-KRWOKUGFSA-O SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H]([NH3+])CO 2D coordinates Mol file for the small molecule Search links Involved in 34 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-hexadecanoylsphing-4-enine Identifier CHEBI:72959 (CAS: 4201-58-5) help_outline Charge 0 Formula C34H67NO3 InChIKeyhelp_outline YDNKGFDKKRUKPY-TURZORIXSA-N SMILEShelp_outline CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)\C=C\CCCCCCCCCCCCC 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:36687 | RHEA:36688 | RHEA:36689 | RHEA:36690 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors.
Riebeling C., Allegood J.C., Wang E., Merrill A.H. Jr., Futerman A.H.
Overexpression of upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene (LAG1), selectively induces the synthesis of stearoyl-containing sphingolipids in mammalian cells (Venkataraman, K., Riebeling, C., Bodennec, J., Riezman, H., Allegoo ... >> More
Overexpression of upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene (LAG1), selectively induces the synthesis of stearoyl-containing sphingolipids in mammalian cells (Venkataraman, K., Riebeling, C., Bodennec, J., Riezman, H., Allegood, J. C., Sullards, M. C., Merrill, A. H. Jr., and Futerman, A. H. (2002) J. Biol. Chem. 277, 35642-35649). Gene data base analysis subsequently revealed a new subfamily of proteins containing the Lag1p motif, previously characterized as translocating chain-associating membrane (TRAM) protein homologs (TRH). We now report that two additional members of this family regulate the synthesis of (dihydro)ceramides with specific fatty acid(s) when overexpressed in human embryonic kidney 293T cells. TRH1 or TRH4-overexpression elevated [3H](dihydro)ceramide synthesis from l-[3-3H]serine and the increase was not blocked by the (dihydro)ceramide synthase inhibitor, fumonisin B1 (FB1). Analysis of sphingolipids by liquid chromatography-electrospray tandem mass spectrometry revealed that TRH4 overexpression elevated mainly palmitic acid-containing sphingolipids whereas TRH1 overexpression increased mainly stearic acid and arachidic acid, which in both cases were further elevated upon incubation with FB1. A similar fatty acid specificity was obtained upon analysis of (dihydro)ceramide synthase activity in vitro using various fatty acyl-CoA substrates, although in a FB1-sensitive manner. Moreover, in homogenates from TRH4-overexpressing cells, sphinganine, rather than sphingosine was the preferred substrate, whereas no preference was seen in homogenates from TRH1-overexpressing cells. These findings lend support to our hypothesis (Venkataraman, K., and Futerman, A. H. (2002) FEBS Lett. 528, 3-4) that Lag1p family members regulate (dihydro)ceramide synthases responsible for production of sphingolipids containing different fatty acids. << Less
J. Biol. Chem. 278:43452-43459(2003) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Biosynthesis of the anti-lipid-microdomain sphingoid base 4,14-sphingadiene by the ceramide desaturase FADS3.
Jojima K., Edagawa M., Sawai M., Ohno Y., Kihara A.
Sphingolipids are multifunctional lipids. Among the sphingolipid-component sphingoid bases, 4,14-sphingadiene (SPD) is unique such that it has a cis double bond with a bent structure. Although SPD was discovered half a century ago, its tissue distribution, biosynthesis, and degradation remain poor ... >> More
Sphingolipids are multifunctional lipids. Among the sphingolipid-component sphingoid bases, 4,14-sphingadiene (SPD) is unique such that it has a cis double bond with a bent structure. Although SPD was discovered half a century ago, its tissue distribution, biosynthesis, and degradation remain poorly understood. Here, we established a specific and quantitative method for SPD measurement and found that SPD exists in a wide range of mammalian tissues. SPD was especially abundant in kidney, where the amount of SPD was ~2/3 of sphingosine, the most abundant sphingoid base in mammals. Although SPD is metabolized to ceramides and SPD 1-phosphate with almost the same efficiency as sphingosine, it is less susceptible to degradation by a cleavage reaction, at least in vitro. We identified the fatty acid desaturase family protein FADS3 as a ceramide desaturase that produces SPD ceramides by desaturating ceramides containing sphingosine. SPD sphingolipids were preferentially localized outside lipid microdomains, suggesting that SPD has different functions compared to other sphingoid bases in the formation of lipid microdomains. In summary, we revealed the biosynthesis and degradation pathways of SPD and its characteristic membrane localization. Our findings contribute to the elucidation of the molecular mechanism underlying the generation of sphingolipid diversity. << Less
FASEB J. 34:3318-3335(2020) [PubMed] [EuropePMC]
This publication is cited by 24 other entries.
-
Fam57b (family with sequence similarity 57, member B), a novel peroxisome proliferator-activated receptor gamma target gene that regulates adipogenesis through ceramide synthesis.
Yamashita-Sugahara Y., Tokuzawa Y., Nakachi Y., Kanesaki-Yatsuka Y., Matsumoto M., Mizuno Y., Okazaki Y.
This report identifies a novel gene encoding Fam57b (family with sequence similarity 57, member B) as a novel peroxisome proliferator-activated receptor γ (PPARγ)-responsive transmembrane gene that is related to obesity. The gene was identified based on an integrated bioinformatics analysis of the ... >> More
This report identifies a novel gene encoding Fam57b (family with sequence similarity 57, member B) as a novel peroxisome proliferator-activated receptor γ (PPARγ)-responsive transmembrane gene that is related to obesity. The gene was identified based on an integrated bioinformatics analysis of the following three expression profiling data sets: adipocyte differentiation of mouse stromal cells (ST2 cells), adipose tissues from obesity mice, and siRNA-mediated knockdown of Pparγ using ST2 cells. Fam57b consists of three variants expressed from different promoters and contains a Tram-Lag1-CLN8 domain that is related to ceramide synthase. Reporter and ChIP assays showed that Fam57b variant 2 is a bona fide PPARγ target gene in ST2 cells. Fam57b was up-regulated during adipocyte differentiation, suggesting that FAM57B is involved in this process. Surprisingly, FAM57B overexpression inhibited adipogenesis, and siRNA-mediated knockdown promoted adipocyte differentiation. Analysis of the ceramide content by lipid assay found that ceramides were in fact augmented in FAM57B-overexpressing ST2 cells. We also confirmed that ceramide inhibits adipogenesis. Therefore, the aforementioned results of FAM57B overexpression and siRNA experiments are reconciled by ceramide synthesis. In summary, we present in vitro evidence showing that PPARγ regulates Fam57b transcription during the adipogenesis of ST2 cells. In addition, our results suggest that PPARγ activation contributes to the regulation of ceramide metabolism during adipogenesis via FAM57B. << Less
J. Biol. Chem. 288:4522-4537(2013) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis.
Luttgeharm K.D., Cahoon E.B., Markham J.E.
Ceramide makes up the acyl-backbone of sphingolipids and plays a central role in determining the function of these essential membrane lipids. In Arabidopsis, the varied chemical composition of ceramide is determined by the specificity of three different isoforms of ceramide synthase, denoted LAG o ... >> More
Ceramide makes up the acyl-backbone of sphingolipids and plays a central role in determining the function of these essential membrane lipids. In Arabidopsis, the varied chemical composition of ceramide is determined by the specificity of three different isoforms of ceramide synthase, denoted LAG one homologue 1, -2 and -3 (LOH1, LOH2 and LOH3), for a range of long-chain base (LCB) and acyl-CoA substrates. The contribution of each of these isoforms to the synthesis of ceramide was investigated by in vitro ceramide synthase assays. The plant LCB phytosphingosine was efficiently used by the LOH1 and LOH3 isoforms, with LOH1 having the lowest Km for the LCB substrate of the three isoforms. In contrast, sphinganine was used efficiently only by the LOH2 isoform. Acyl-CoA specificity was also distinguished between the three isoforms with LOH2 almost completely specific for palmitoyl-CoA whereas the LOH1 isoform showed greatest activity with lignoceroyl- and hexacosanoyl-CoAs. Interestingly, unsaturated acyl-CoAs were not used efficiently by any isoform whereas unsaturated LCB substrates were preferred by LOH2 and 3. Fumonisin B1 (FB1) is a general inhibitor of ceramide synthases but LOH1 was found to have a much lower Ki than the other isoforms pointing towards the origin of FB1 sensitivity in plants. Overall, the data suggest distinct roles and modes of regulation for each of the ceramide synthases in Arabidopsis sphingolipid metabolism. << Less
Biochem. J. 473:593-603(2016) [PubMed] [EuropePMC]
This publication is cited by 16 other entries.